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Appendix J

Log transformations
Introduction
This appendix documents staff’s inquiry into the problem of applying distribution-based statistical tests to average-based performance measures. Unlike for percentage-based and rate-based measures, no distribution-free tests for average-based measures are ready to implement given the current record in this proceeding. Consequently, the only current test option is the modified t-test. Staff’s primary concern is that the accuracy of normal distribution based statistical tests, such as the t-test, diminishes for smaller samples to the degree that those samples depart from normality.
 The Central Limit Theorem states that with larger samples, the sampling distribution of means is normally distributed even for non-normal raw score distributions. However, the degree of non-normality, and especially the degree of asymmetry, affects the sampling distribution, and especially affects one-tailed tests.

Staff investigated data transformations for applying normal distribution based tests to non-normal data.
 The investigation examines: (1) several actual performance data distributions, (2) a theoretical sampling mean distribution, (3) the statistical effects of several data-normalizing transformations, and (4) the performance evaluation implications of the most statistically appropriate transformation. Conclusions regarding the best option are presented.

Method and Results

Performance result distributions

Sixteen average-based ILEC performance submeasure distributions from one performance measure were examined.
  Statistics for non-normality, skewness and kurtosis, were calculated. All but one of the distributions were positively skewed
 and all but two were leptokurtic. 
 While a normal curve has skeweness and kurtosis values of zero, the skewness of the sixteen submeasures ranged from 0.0 to 28.3, and the kurtosis ranged from –1.6 to 1746. Table 1 reports the skewness and kurtosis for the sixteen distributions. The frequency distribution graphs for these sixteen distributions are presented in Attachment 1 to this appendix.

Table 1

	Submeasure
	N
	Mean
	Median
	Skewness
	Kurtosis

	
	
	
	
	
	

	Ex. 1
	179254
	1.18
	0
	21.0
	1430.3

	Ex. 2
	23608
	1.60
	0
	15.4
	503.0

	Ex. 3
	19943
	6.91
	6
	12.1
	271.2

	Ex. 4
	17951
	0.92
	0
	28.3
	1745.7

	Ex. 5
	17940
	2.76
	2
	15.6
	590.3

	Ex. 6
	11864
	1.40
	0
	9.1
	184.6

	Ex. 7
	9149
	1.29
	0
	19.7
	661.2

	Ex. 8
	6827
	2.48
	1
	10.3
	198.6

	Ex. 9
	6340
	3.05
	1
	5.3
	48.2

	Ex. 10
	771
	8.18
	7
	6.9
	105.3

	Ex. 11
	538
	7.89
	7
	1.8
	8.2

	Ex. 12
	34
	71.62
	20
	0.5
	-1.6

	Ex. 13
	14
	34.36
	20.5
	1.4
	1.5

	Ex. 14
	9
	6.00
	4
	1.9
	4.0

	Ex. 15
	8
	47.50
	40.5
	0.7
	-0.1

	Ex. 16
	6
	10.50
	10.5
	0.0
	2.1


Academic theory indicates data from measures of time to complete a task are lognormally distributed.
 Overall, the skewness and kurtosis of these distributions were consistent with what would be expected from a lognormal distribution. Only three of the five smallest samples (n < 35) had skewness less than one (< 1). Only two of the smallest five samples had kurtosis less than one (< 1).

Theoretical sampling mean distributions

To examine the extent of the problem posed by the skewness of the data, simulated distributions were examined to investigate the sample sizes necessary to achieve normality in the sampling mean distribution. While Central Limit Theorem poses that sampling mean distributions will be normal for many large non-normal samples, it is not clear if Central Limit Theorem’s general tenet applies to the data for these measures. 

At staff’s request, Pacific Bell’s consultant, Dr. Gleason, created a MathCad© worksheet to generate multiple samples from a lognormal distribution. This worksheet is included as Attachment 2. Using this worksheet five analyses were repeated for several selected performance results. The analysis summary following the worksheet pages shows that even for samples as large as 1000, many distributions are non-normal, the degree of departure from normality can be highly variable, and the log transformation notably improves normality. 

Transformation statistical effects

Since measures of time to complete a task are theoretically lognormally distributed, log transformations of the raw data were examined. However, since the data contains values of zero (0), logs cannot be taken directly from the raw data, since the log of zero (0) cannot be computed. One recommendation is to add a constant of one (1) to each score.
 However, in several cases of performance measures, the raw data is actually categorized continuous data where all orders, for example, completed in the same day as initiated were assigned a zero. In these cases there are no “true” zero values since each order takes some time to complete. The lower bound of each interval is taken as the performance result, leaving the lowest interval with a value of zero. 

Suggesting that some value in the middle of the interval defined by each integer may be a more appropriate representation of the interval, staff asked Dr. Gleason to determine the optimal constant for the transformation. Dr. Gleason simulated continuous lognormal distributions which he then categorized using the performance data categories. Using a MathCad© worksheet (Attachment 3 to this appendix), Dr. Gleason then

calculated a constant that, when added to the actual categorized data, would best represent the parameters of the original continuous distribution. Staff used Dr. Gleason’s worksheet to calculate the constant that would best fit actual ILEC and CLEC performance.
 The worksheet calculates that the upper limit for the optimal constant is approximately 0.5, with virtually all values between 0.3 and 0.5.
 The mean and standard deviation of the distributions affect the value of the constant, making the optimal constant slightly different for each analysis. 

These results are theoretically reasonable as well. The mathematical midpoint of an interval in a skewed distribution
 is not likely to accurately represent the distribution of scores in most intervals.

The sixteen distributions were then log-transformed using three different constants: 0.3, 0.4, and 0.5. The preponderance of transformations resulted in a closer approximation to normality. The results are presented in Attachment 4. In a few of the small samples where transformations did not improve normality, the transformed results are still relatively close to normality. From these transformations it is difficult to tell which constant best and most consistently improved normality. The transformations made with the constant of 0.5 improved normality most for large means, and the transformation with the constant of 0.3 improved normality most for the samples with small means.

Since it would be impractical to calculate the optimal constant for each result, and one of the constants must be selected, staff examined the sensitivity of the modified t-test to the different transformations. Staff sought to determine which one of the constants would result in the least discrepancy compared to using an optimal constant for each result. Type I error probabilities () were calculated for the sixteen submeasures. Attachment 5 presents a comparison of t-test results using raw scores and different log transformations. Use of the 0.4 constant for all results appears to minimize potential discrepancies between using result-specific optimal constants versus using a single constant for all results. In other words, compared to using the 0.3 or 0.5 constants for all results, using the 0.4 constant results in an  closer to the  calculated by using the result-specific optimal constant.

The constant should be added wherever the average-based performance measures produce zeros by categorizing continuous data. Following this criterion, current information indicates that constants should be used with transformations for performance measures 7, 14, 21, 28, and 37, and that performance measures 1 and 44 need no constants. 

The constant should be added at the level of categorization. For example, if the smallest measurement unit is one day, then a constant of 0.4 days should be added to each observation. If the smallest measurement unit is one-hundredth of an hour, such as for performance measure 21, then the constant of 0.4 of one-hundredth (4 thousandths) of an hour should be added to each observation. 

Performance evaluation implications

The meaning of the impact on actual performance result decisions was also examined. (See Attachment 5.) Fourteen of the 16 industry-aggregate results had the same “pass/failure” designation for the log transformation analysis as they did for the original raw score analysis. Two results failed the log-based analysis when they originally passed the raw score analysis: submeasure examples “9” and “10.” Both showed CLEC average performance worse than ILEC average performance, but the average differences were not statistically different using a raw score based test. Submeasure example “9” illustrates the nature of this failure. The original data analysis resulted in a “pass” with an alpha of 0.32, whereas the log transformed data resulted in a “failure” with an alpha of less than 0.0001. For both submeasure examples “9” and “10,” compared to the means, the medians showed greater differences between ILEC and CLEC performance. In these instances, the log transformation has the effect of giving a better reflection of the difference between the two distributions 

than was the case for the raw data. In the raw data analyses, extreme scores in the ILEC distribution mask the typically poorer performance for the CLEC. The transformation  minimizes the effects of these extreme values. 

Possibly the best illustration of the difference between the log and raw score based analyses is the results for one CLEC-specific result in submeasure example “9,” where the direction of the difference between the medians was the opposite for the means. Whereas the raw score CLEC mean was 2.8 days, compared to the ILEC mean of 3.0 days, the CLEC median was 3.0 and the ILEC mean was 1.0. In other words, the average time to complete the OSS task for the CLEC was 2.8 days, which is better than the 3.0-day average for the ILEC. In contrast, the median for the ILEC performance was one day while the median for the CLEC performance was two days. In other words,  the ILEC took one day or less to complete the OSS task for fifty percent of its customers, whereas the ILEC took three days or less to complete the same OSS task for fifty percent of the CLECs’ customers. Similar to the submeasure “9” and “10” aggregate results, the median difference for this CLEC result was much larger than the mean difference. These results show that the distributions are markedly different. Whereas the raw score analysis did not show this result to be significant ( = 0.86), the transformation analysis identified a significant difference ( < 0.0001).

In these cases, the log transformation analysis appears to track the differences in medians more closely than the means. This is consistent with academic sources that point out the value of median-based assessments when the data is skewed. For example, Hays (1997) states, 

The alteration of the score for a single extreme case in a distribution may have a profound effect on the mean. It is evident that the mean follows the skewed tail in the distribution, but the median does so to a lesser extent. The occurrence of even a few very high or very low cases can seriously distort the impression of the distribution given by the mean, provided that one mistakenly interprets the mean as the typical value. If you are dealing with a nonsymmetric distribution and you want to communicate the typical value, you must report the median. (p. 181)

To assess the operational meaning of the transformation staff also examined the cumulative distribution. The cumulative percentage distribution data and graphs are included in Attachment 1 for submeasures 1 through 16, and in Attachment 7 for the CLEC-specific results described above. While a frequency distribution shows the number of “orders” completed for each time interval, a cumulative distribution shows the percentage of “orders” that were completed by a specific number of “days” or less.
 For example, the frequency distribution for submeasure “9” shows that approximately 500 of the ILEC’s orders took 3 days to complete. In contrast, the cumulative distribution for submeasure “9” shows that about 80 percent of the ILEC’s orders were completed in three days or less. In the cumulative distribution graphs, the higher line represents better service. For example, for submeasure “9,” ILEC customers (black line) are getting better service than CLEC customers (white line) up until the point where approximately 80 percent of the orders have been completed – at a time interval of “3.” Where the ILEC line is higher means that compared to CLEC customers, a greater percentage of ILEC customers are getting their orders completed within the specified time intervals. After this point, CLEC customers are getting better service as illustrated by the lines crossing. After this point the CLEC line is higher, meaning that a higher percentage of CLEC customers are getting their “orders” completed within the same time interval as ILEC customers. 

The graphs in these two attachments provide a more detailed comparison of the two distributions and illustrate what the log transformation analysis detects that the raw score analysis does not. The graph shows that for submeasure example “9,” for up to 80 percent of the customers, the ILEC gave better performance to its own customers. Specifically, 52 percent of ILEC customers’ orders, compared to 6 percent of CLEC customers’ orders, were completed within one day after the order was confirmed. Similarly, 72 percent of ILEC customers’ orders, compared to 31 percent of CLEC customers’ orders, were completed within two days after the order was confirmed. It is only in the final 20 percent of the distributions that CLEC customers received better performance than did the ILEC customers. For example, by the time five days passed, 88 percent of ILEC customers’ orders were completed compared to 95 percent of CLEC customer’s orders. These graphs depict distributions that are not “substantially equal,” where CLEC customers are predominately disadvantaged even though, on the average, their completion interval is less.

Conclusions

The log transformation of time measurement raw scores that have been increased by a constant is academically supported for average-based parity measures of time to complete a task. Using a constant of 0.4 (of the smallest interval) for each transformation reasonably corrects for distribution distortions introduced by categorizing all continuous values into integers, brings the data close to being normally distributed, and results in the least variation in a Type I error probability calculation compared to using a different constant for each transformation. Additionally, sample mean distribution normality is improved not only for small to moderate samples, but also for large samples. For these reasons, this log transformation of scores with an added constant of 0.4 is the best practical option for applying the modified t-test to average-based parity measures. Additionally, the log transformation allows an appropriate statistical and practically meaningful performance assessment. Until other methods are shown to be superior and ready to implement, the Modified t-test application using log transformations is justifiable and reasonable. 
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[image: image2.wmf]Cumulative distribution - Submeasure example 1
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[image: image3.wmf]Frequency distribution - Submeasure example 2
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[image: image4.wmf]Frequency distribution detail - Submeasure example 2
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[image: image5.wmf]Cumulative distribution - Submeasure example 2
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[image: image6.wmf]Frequency distribution - Submeasure example 3
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[image: image7.wmf]Frequency distribution detail - Submeasure example 3
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[image: image8.wmf]Cumulative distribution - Submeasure example 3
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[image: image9.wmf]Frequency distribution - Submeasure example 4
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[image: image10.wmf]Cumulative distribution - Submeasure example 4
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[image: image11.wmf]Frequency distribution - Submeasure example 5
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[image: image12.wmf]Cumulative distribution - Submeasure example 5
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[image: image13.wmf]Frequency distribution - Submeasure example 6
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[image: image14.wmf]Frequency distribution detail - Submeasure example 6
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[image: image15.wmf]Cumulative distribution - Submeasure example 6
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[image: image16.wmf]Frequency distribution - Submeasure example 7
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[image: image17.wmf]Frequency distribution detail - Submeasure example 7
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[image: image18.wmf]Cumulative distribution - Submeasure example 7
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[image: image19.wmf]Frequency distribution - Submeasure example 8
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[image: image20.wmf]Cumulative distribution - Submeasure example 8

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Time interval

Cumulative percentage

ILEC

CLEC


[image: image21.wmf]Frequency distribution - Submeasure example 9
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[image: image22.wmf]Cumulative distribution - Submeasure example 9
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[image: image23.wmf]Frequency distribution - Submeasure example 10
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[image: image24.wmf]Cumulative distribution - Submeasure example 10
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[image: image25.wmf]Frequency distribution - Submeasure example 11
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[image: image26.wmf]Cumulative distribution - Submeasure example 11
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[image: image27.wmf]Frequency distribution - Submeasure example 12
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[image: image28.wmf]Cumulative distribution - Submeasure example 12
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[image: image29.wmf]Frequency distribution - Submeasure example 13
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[image: image30.wmf]Cumulative distribution - Submeasure example 13
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[image: image31.wmf]Frequency distribution - Submeasure example 14

0

1

2

3

4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Time interval

Frequency

ILEC

CLEC


[image: image32.wmf]Cumulative distribution - Submeasure example 14

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Time interval

Cumulative percentage

ILEC

CLEC


[image: image33.wmf]Frequency distribution - Submeasure example 15
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[image: image34.wmf]Cumulative distribution - Submeasure example 15
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[image: image35.wmf]Frequency distribution - Submeasure example 16
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[image: image36.wmf]Cumulative distribution - Submeasure example 16
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Mathcad worksheet: Investigation of the mean, standard deviation, skewness, and kurtosis of the sampling distribution of the mean before and after log transformations.

Set the parameters for the original process

[image: image37.wmf]m
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Process mean
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Process standard deviation

Set sample sizes
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Sample size

Set additive constant for categorized distribution

[image: image40.wmf]C
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Additive constant

This simulation works by generating J samples of means for which the mean, standard deviation, skewness and kurtosis are calculated.  This process is repeated K times and the means of the statistics on the sampling distributions are calculated.

Set number of samples for each simulation of the sampling distribution 
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Set number of simulations 
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The following calculate the log parameters of the distribution 
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The following function generates a log normal distribution using logl parameters.
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This function generates means for four kinds of distributions:


1. lognormal


2. log of lognormal


3. categorized lognormal (into integers) with constant


4. log of categorized lognormal with constant
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This function calculates statistics on each sample of sampling means and returns these statistics in a vector.

[image: image51.wmf]sim

k

(

)

X

j

<

>

f

j

(

)

j

0

J

1

..

Î

for

Y

4

h

.

0

mean

X

(

)

T

h

<

>

Y

4

h

.

1

stdev

X

(

)

T

h

<

>

Y

4

h

.

2

skew

X

(

)

T

h

<

>

Y

4

h

.

3

kurt

X

(

)

T

h

<

>

h

0

3

..

Î

for

Y

return


[image: image52.wmf]Y

k

<

>

sim

k

(

)


Statistics for the distribution of sample means for the untransformed (original) distribution.

Compare

Mean:
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Standard Deviation:
[image: image55.wmf]mean

Y

T

1

<

>

0.247

=


[image: image56.wmf]s

N

0.26

=


Skewness:
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Kurtosis:
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Statistics for the distribution of sample means for the log transformed data.

Compare

Mean:
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Standard Deviation:
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Skewness:
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Kurtosis:
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Statistics for the distribution of sample means for the categorized data with an added constant of C.

Compare

Mean:
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Standard Deviation:
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Skewness:
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Statistics for the distribution of sample means for the logs of the categorized data with an added constant of C.

Compare

Mean:
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Standard Deviation:

[image: image73.wmf]mean

Y

T

13

<

>

0.071

=


[image: image74.wmf]s

N

0.156

=


Skewness:
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Kurtosis:


[image: image76.wmf]mean

Y

T

15

<

>

1.557

10

3

.

=


	Skewness and kurtosis variability of theoretical sampling means

	 
	Raw data parameters
	 
	Sampling mean distribution 

	 
	 
	 
	 
	 
	        Untransformed data
	      Transformed data

	Sample size
	SD
	M
	Cases
	Constant
	Skewness
	Kurtosis
	Skewness
	Kurtosis

	1000
	2.6
	0.5
	24
	0.3
	1.7
	7.1
	0.1
	0.2

	 
	
	
	
	
	1.7
	6.7
	0.1
	0.1

	 
	
	
	
	
	1.6
	5.9
	0.1
	-0.1

	 
	
	
	
	
	1.6
	5.9
	0.1
	0.0

	 
	
	
	
	
	1.8
	7.7
	0.2
	0.1

	1000
	2.5
	0.8
	129
	0.4
	0.9
	2.2
	0.1
	-0.1

	 
	
	
	
	
	0.7
	1.1
	0.2
	-0.2

	 
	
	
	
	
	0.9
	1.6
	0.1
	0.0

	 
	
	
	
	
	0.7
	1.0
	0.0
	-0.1

	 
	
	
	
	
	1.2
	4.3
	0.1
	0.3

	100
	2.5
	0.8
	129
	0.4
	1.8
	7.0
	0.2
	0.1

	 
	
	
	
	
	1.7
	5.3
	0.2
	0.1

	 
	
	
	
	
	1.8
	6.1
	0.3
	0.0

	 
	
	
	
	
	2.1
	9.0
	0.2
	0.1

	 
	
	
	
	
	1.6
	5.0
	0.2
	0.0

	1000
	6
	2.9
	70
	0.5
	0.3
	0.4
	-0.1
	-0.2

	 
	
	
	
	
	0.5
	0.8
	0.0
	-0.1

	 
	
	
	
	
	0.4
	0.5
	-0.1
	0.0

	 
	
	
	
	
	0.9
	3.5
	0.1
	-0.1

	 
	
	
	
	
	0.5
	0.5
	0.0
	-0.1

	100
	6
	2.9
	70
	0.5
	1.4
	4.9
	0.1
	0.0

	 
	
	
	
	
	0.9
	1.4
	0.2
	-0.2

	 
	
	
	
	
	3.1
	34.3
	0.1
	0.0

	 
	
	
	
	
	1.7
	8.9
	0.0
	0.1

	 
	
	
	
	
	2.6
	24.1
	0.0
	0.5

	100
	7
	6
	131
	0.5
	0.6
	0.7
	0.0
	0.2

	 
	
	
	
	
	0.6
	1.1
	0.1
	-0.1

	 
	
	
	
	
	0.4
	0.3
	0.0
	0.1

	 
	
	
	
	
	0.3
	0.0
	-0.1
	0.0

	 
	
	
	
	
	0.6
	1.1
	-0.1
	0.1

	30
	7
	6
	131
	0.5
	1.2
	3.3
	0.0
	0.0

	 
	
	
	
	
	0.9
	1.5
	0.0
	-0.1

	 
	
	
	
	
	1.0
	2.2
	-0.1
	-0.2

	 
	
	
	
	
	1.1
	2.3
	0.0
	-0.2

	 
	
	
	
	
	0.8
	1.1
	-0.1
	0.2

	1000
	16
	3.1
	24
	0.4
	1.0
	1.9
	0.0
	-0.2

	 
	
	
	
	
	3.2
	32.2
	0.0
	-0.1

	 
	
	
	
	
	1.5
	4.3
	0.1
	0.4

	 
	
	
	
	
	1.3
	3.0
	0.0
	0.0

	 
	
	
	
	
	1.6
	7.1
	-0.1
	0.1

	100
	25
	13
	29
	0.5
	0.9
	1.5
	0.0
	-0.2

	 
	
	
	
	
	2.0
	11.4
	0.0
	0.1

	 
	
	
	
	
	0.9
	1.6
	0.1
	0.6

	 
	
	
	
	
	1.1
	2.3
	0.1
	0.3

	 
	 
	 
	 
	 
	1.1
	3.0
	-0.1
	0.0


Mathcad worksheet: Investigation of the added constant used with the log transformation on a categorized lognormal distribution

Set the parameters for the original process
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Process mean
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Process standard deviation

Set  size of sample for investigating distribution
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The following calculate the log parameters of the distribution 

[image: image80.wmf]m

ln

m

2

m

2

s

2



[image: image81.wmf]m

1.776

=


[image: image82.wmf]s

ln

m

2

s

2

m

2

1

2


[image: image83.wmf]s

1.828

=


The following function generates a log normal distribution using log

 parameters.
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Theoretical mean
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Emprical mean
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Theoretical standard deviation
[image: image88.wmf]s

4.7

=


Emprical standard deviation
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The following solves for a, that value which, when added to the bottom end of each interval, best recreates the emprical mean
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Mean using added constant
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Standard deviation using added constant
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(Compare to the log parameters above)
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	Skewness and kurtosis of performance result distributions

	 
	 
	 
	Raw score
	Log(x+0.5)
	Log(x+0.4)
	Log(x+0.3)

	
	
	Ex. 1
	 
	
	
	 

	
	
	N
	179254
	179254
	179254
	179254

	
	
	Mean
	1.18
	-0.1128
	-0.2808
	-0.4948

	
	
	Median                        
	0
	-0.6931
	-0.9163
	-1.204

	
	
	Skewness
	21.002
	1.331
	1.291
	1.244

	
	
	Kurtosis
	1430.297
	0.28
	0.126
	-0.046

	
	
	Ex. 2
	 
	
	
	 

	
	
	N
	23608
	23608
	23608
	23608

	
	
	Mean
	1.6
	0.1008
	-3.81E-02
	-0.2122

	
	
	Median                        
	0
	-0.6931
	-0.9163
	-1.204

	
	
	Skewness
	15.411
	1.053
	0.942
	0.817

	
	
	Kurtosis
	503.008
	0.71
	0.3
	-0.131

	
	
	Ex. 3
	 
	
	
	 

	
	
	N
	19943
	19943
	19943
	19943

	
	
	Mean
	6.91
	1.8604
	1.8405
	1.8193

	
	
	Median                        
	6
	1.8718
	1.8563
	1.8405

	
	
	Skewness
	12.106
	-1.27
	-1.513
	-1.818

	
	
	Kurtosis
	271.231
	9.202
	9.945
	11.092

	
	
	Ex. 4
	 
	
	
	 

	
	
	N
	17951
	17951
	17951
	17951

	
	
	Mean
	0.9215
	-0.1906
	-0.3589
	-0.5723

	
	
	Median                        
	0
	-0.6931
	-0.9163
	-1.204

	
	
	Skewness
	28.256
	1.634
	1.528
	1.412

	
	
	Kurtosis
	1745.695
	2.331
	1.773
	1.188

	
	
	Ex. 5
	 
	
	
	 

	
	
	N
	17940
	17940
	17940
	17940

	
	
	Mean
	2.76
	0.8407
	0.783
	0.7187

	
	
	Median                        
	2
	0.9163
	0.8755
	0.8329

	
	
	Skewness
	15.569
	0.666
	0.499
	0.278

	
	
	Kurtosis
	590.337
	1.57
	1.473
	1.453

	
	
	Ex. 6
	 
	
	
	 

	
	
	N
	11864
	11864
	11864
	11864

	
	
	Mean
	1.3988
	5.55E-02
	-9.15E-02
	-0.277

	
	
	Median                        
	0
	-0.6931
	-0.9163
	-1.204

	
	
	Skewness
	9.105
	0.925
	0.861
	0.789

	
	
	Kurtosis
	184.585
	-0.336
	-0.538
	-0.755


	
	
	Skewness and kurtosis of performance result distributions

	
	
	Ex. 7
	 
	
	
	 

	
	
	N
	9149
	9149
	9149
	9149

	
	
	Mean
	1.2922
	-8.06E-02
	-0.2426
	-0.4484

	
	
	Median                        
	0
	-0.6931
	-0.9163
	-1.204

	
	
	Skewness
	19.716
	1.362
	1.289
	1.208

	
	
	Kurtosis
	661.21
	0.903
	0.585
	0.246

	
	
	Ex. 8
	 
	
	
	 

	
	
	N
	6827
	6827
	6827
	6827

	
	
	Mean
	2.4837
	0.7652
	0.7077
	0.6453

	
	
	Median                        
	1
	0.4055
	0.3365
	0.2624

	
	
	Skewness
	10.337
	1.493
	1.364
	1.187

	
	
	Kurtosis
	198.575
	3.221
	3.021
	2.868

	
	
	Ex. 9
	 
	
	
	 

	
	
	N
	6340
	6340
	6340
	6340

	
	
	Mean
	3.05
	0.8676
	0.8113
	0.7491

	
	
	Median                        
	1
	0.4055
	0.3365
	0.2624

	
	
	Skewness
	5.295
	0.993
	0.855
	0.668

	
	
	Kurtosis
	48.225
	1.505
	1.414
	1.377

	
	
	Ex. 10
	 
	
	
	 

	
	
	N
	771
	771
	771
	771

	
	
	Mean
	8.18
	1.7666
	1.7302
	1.6875

	
	
	Median                        
	7
	2.0149
	2.0015
	1.9879

	
	
	Skewness
	6.917
	-0.998
	-1.094
	-1.214

	
	
	Kurtosis
	105.315
	0.542
	0.749
	1.03

	
	
	Ex. 11
	 
	
	
	 

	
	
	N
	538
	538
	538
	538

	
	
	Mean
	7.89
	1.7286
	1.6883
	1.6402

	
	
	Median                        
	7
	2.0149
	2.0015
	1.9879

	
	
	Skewness
	1.81
	-1.096
	-1.177
	-1.277

	
	
	Kurtosis
	8.242
	0.408
	0.579
	0.802

	
	
	Ex. 12
	 
	
	
	 

	
	
	N
	34
	34
	34
	34

	
	
	Mean
	71.6176
	3.2922
	3.2818
	3.2712

	
	
	Median                        
	20
	3.001
	2.9959
	2.9908

	
	
	Skewness
	0.525
	-0.017
	-0.023
	-0.03

	
	
	Kurtosis
	-1.623
	-1.712
	-1.705
	-1.698


	
	
	Skewness and kurtosis of performance result distributions

	
	
	Ex. 13
	 
	
	
	 

	
	
	N
	14
	14
	14
	14

	
	
	Mean
	34.3571
	2.8667
	2.8315
	2.7871

	
	
	Median                        
	20.5
	3.0442
	3.0395
	3.0347

	
	
	Skewness
	1.389
	-1.54
	-1.597
	-1.664

	
	
	Kurtosis
	1.484
	1.906
	2.033
	2.184

	
	
	Ex. 14
	 
	
	
	 

	
	
	N
	9
	9
	9
	9

	
	
	Mean
	6
	1.2422
	1.1746
	1.0919

	
	
	Median                        
	4
	1.5041
	1.4816
	1.4586

	
	
	Skewness
	1.874
	-0.407
	-0.492
	-0.594

	
	
	Kurtosis
	3.97
	-0.763
	-0.73
	-0.671

	
	
	Ex. 15
	 
	
	
	 

	
	
	N
	8
	8
	8
	8

	
	
	Mean
	47.5
	3.244
	3.2322
	3.2201

	
	
	Median                        
	40.5
	3.7135
	3.7111
	3.7086

	
	
	Skewness
	0.732
	-1.041
	-1.048
	-1.056

	
	
	Kurtosis
	-0.114
	-0.426
	-0.419
	-0.412

	
	
	Ex. 16
	 
	
	
	 

	
	
	N
	6
	6
	6
	6

	
	
	Mean
	10.5
	2.3667
	2.3569
	2.347

	
	
	Median                        
	10.5
	2.3969
	2.3877
	2.3785

	
	
	Skewness
	0
	-0.912
	-0.92
	-0.929

	
	
	Kurtosis
	2.086
	2.601
	2.611
	2.62


	Sensitivity analysis: Effects of transformations on alpha estimates

	Ex.      No.
	Constant used
	Ni
	Mi
	SDi
	Nc
	Mc
	Z
	
	Theoretical constant

	1
	no trnsfmn
	179254
	1.18
	2.97
	4296
	0.149
	-22.485
	1.00
	 

	1
	0.5
	179254
	-0.1128
	0.9696
	4296
	-0.5295
	-27.837
	1.00
	 

	1
	0.4
	179254
	-0.2808
	1.0537
	4296
	-0.7297
	-27.594
	1.00
	0.44

	1
	0.3
	179254
	-0.4948
	1.653
	4296
	-0.9855
	-19.228
	1.00
	 

	 
	
	
	
	
	
	
	
	
	 

	2
	no trnsfmn
	23608
	1.6
	4.8
	21
	3.52
	1.832
	0.0335
	 

	2
	0.5
	23608
	0.1008
	0.9636
	21
	0.7646
	3.155
	0.0008
	0.48

	2
	0.4
	23608
	-0.0381
	1.0474
	21
	0.6724
	3.107
	0.0009
	 

	2
	0.3
	23608
	-0.2122
	1.1602
	21
	0.558
	3.041
	0.0012
	 

	 
	
	
	
	
	
	
	
	
	 

	4
	no trnsfmn
	17951
	0.9215
	3.4631
	276
	0.337
	-2.783
	0.997
	 

	4
	0.5
	17951
	-0.1906
	0.8292
	276
	-0.3251
	-2.674
	0.996
	 

	4
	0.4
	17951
	-0.3589
	0.907
	276
	-0.4968
	-2.507
	0.994
	0.36

	4
	0.3
	17951
	-0.5723
	1.012
	276
	-0.7131
	-2.294
	0.989
	 

	 
	
	
	
	
	
	
	
	
	 

	5
	no trnsfmn
	17940
	2.76
	4.69
	302
	1.755
	-3.693
	0.9999
	 

	5
	0.5
	17940
	0.8407
	0.739
	302
	0.6969
	-3.353
	0.9996
	0.50

	5
	0.4
	17940
	0.783
	0.7783
	302
	0.6348
	-3.282
	0.9995
	 

	5
	0.3
	17940
	0.7147
	0.8282
	302
	0.5651
	-3.113
	0.9991
	 

	 
	
	
	
	
	
	
	
	
	 

	7
	no trnsfmn
	9149
	1.2922
	4.3519
	30
	5.4
	5.162
	0.00000013
	 

	7
	0.5
	9149
	-0.08056
	0.9588
	30
	1.3947
	8.414
	0.00000000
	0.40

	7
	0.4
	9149
	-0.2426
	1.0421
	30
	1.3477
	8.345
	0.00000000
	 

	7
	0.3
	9149
	-0.4484
	1.1535
	30
	1.2916
	8.249
	0.00000000
	 

	 
	
	
	
	
	
	
	
	
	 

	9
	no trnsfmn
	6340
	3.05
	4.9
	714
	3.1387
	0.459
	0.32
	 

	9
	0.5
	6340
	0.8676
	0.782
	714
	1.1988
	10.729
	0.00
	0.50

	9
	0.4
	6340
	0.8113
	0.8171
	714
	1.1639
	10.932
	0.00
	 

	9
	0.3
	6340
	0.7491
	0.8608
	714
	1.1269
	11.118
	0.00
	 

	 
	
	
	
	
	
	
	
	
	 

	10
	no trnsfmn
	771
	8.18
	7.95
	179
	8.45
	0.409
	0.341
	 

	10
	0.5
	771
	1.7666
	1.0351
	179
	1.96
	2.252
	0.012
	0.50

	10
	0.4
	771
	1.7302
	1.0883
	179
	1.9397
	2.320
	0.010
	 

	10
	0.3
	771
	1.6875
	1.1571
	179
	1.9181
	2.402
	0.008
	 

	 
	
	
	
	
	
	
	
	
	 

	11
	no trnsfmn
	538
	7.89
	6.33
	115
	9.0696
	1.814
	0.0351
	 

	11
	0.5
	538
	1.7286
	1.0742
	115
	2.0628
	3.028
	0.0013
	0.50

	11
	0.4
	538
	1.6883
	1.1347
	115
	2.0468
	3.075
	0.0011
	 

	11
	0.3
	538
	1.6402
	1.2133
	115
	2.0303
	3.130
	0.0009
	 


	Ex.      No.
	Constant used
	Ni
	Mi
	SDi
	Nc
	Mc
	Z
	
	Theoretical constant

	13
	no trnsfmn
	14
	34.3571
	32.5874
	30
	25.03
	-0.884
	0.80
	 

	13
	0.5
	14
	2.8667
	1.6447
	30
	3.1086
	0.454
	0.33
	0.50

	13
	0.4
	14
	2.8315
	1.7188
	30
	3.1037
	0.489
	0.32
	 

	13
	0.3
	14
	2.7871
	1.8152
	30
	3.0987
	0.530
	0.30
	 

	 
	
	
	
	
	
	
	
	
	 

	14
	no trnsfmn
	9
	6
	7.2284
	18
	25.2222
	6.514
	0.00009
	 

	14
	0.5
	9
	1.2422
	1.3276
	18
	3.1782
	3.572
	0.00364
	0.50

	14
	0.4
	9
	1.1746
	1.4104
	18
	3.1736
	3.472
	0.00421
	 

	14
	0.3
	9
	1.0919
	1.5187
	18
	3.1689
	3.350
	0.00504
	 

	 
	
	
	
	
	
	
	
	
	 

	15
	no trnsfmn
	8
	47.5
	41.127
	30
	25.77
	-1.328
	0.887
	 

	15
	0.5
	8
	3.244
	1.5084
	30
	3.2332
	-0.018
	0.507
	0.50

	15
	0.4
	8
	3.2322
	1.5258
	30
	3.2291
	-0.005
	0.502
	 

	15
	0.3
	8
	3.2201
	1.5439
	30
	3.225
	0.008
	0.497
	 


[image: image111.wmf]Distributions - BANY hypothetical data
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[image: image113.wmf]Frequency distribution - CLEC-specific performance
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� Winer (1971), p. 6.

� Hays (1997), pp. 327-328; McNemar (1962), pp. 106-107.

� Performance measure 34 does not measure time to complete a task and is likely normally distributed. It is excluded from this discussion and will not be subject to log transformation. See Pacific Bell Comments on the Draft Decision at 3 (December 18, 2000).

� These distributions were provided by Pacific Bell. Staff also examined six distributions provided by Verizon and found the shape of those distributions to be similar. Those results are not reported here. 



� Positive values indicate positive skewness, that is, the observations are concentrated at the lower end of the scale and gradually trail off to fewer observations in a longer “tail” to the right, the higher part of the scale. Briefly stated, a positively skewed distribution has a longer tail for higher scores than for lower scores. Negative skewness values indicate the reverse, that is, a longer tail for the lower scores relative to the higher scores.

� Positive values indicate leptokurtic distributions, that is, the distribution is more peaked than a normal distribution. Negative values indicate platykurtic distributions, that is, the distribution is flatter than a normal distribution. 

� Winer (1971), p. 400.

� Id.

� Staff used the worksheet by entering an actual posted result with a constant added to the mean. The standard deviation was entered as posted since it does not change when a constant is added to the data. If the added constant matched the calculated estimated constant (designated “”), the calculated constant was taken to be the optimal constant. For example, for an actual posted performance result with a mean of 0.92 and a standard deviation of 3.46, a mean of 1.28 (0.92 + 0.36) was entered as the final “guess” confirming that the optimal constant would be 0.36. 

� A survey of average-based results for January through June, 2000, indicates that the theoretically most appropriate constant ranges between 0.3 and 0.5 for about 99 percent of the results (687 out of 696). For about one percent of the results (7 out of 696) a constant of between .06 and 1.2 appeared to be most appropriate.  However, these seven results occurred only in March 2000 and only once for each of seven submeasures, and the constants for all other months were 0.5 for each of these submeasures. Constants for three other submeasure results were estimated to be about 0.25, but for each submeasure, the other months had estimated constants of over 0.3. No results indicate optimal constants less than 0.3 for any result since March 2000. Constants under 0.3 appear to be anomalies.

� E.g., the interval 0.0 to 1.0 has a mathematical midpoint of 0.5.

� A reverse of this situation is demonstrated in the BANY hypothetical data set provided in Verizon’s comments in John Jackson’s paper (see References). Results for the BANY data set show performance “failure” for the raw score analysis, but performance “success” for the log transformed analysis. In the BANY data set, using a 0.10 critical significance level, the difference between the ILEC and CLEC means is significant for a raw score analysis (p = 0.083), and marginally significant for a permutation analysis (p = 0.0855 to 0.1085). However, one CLEC outlier is responsible for the CLEC mean being greater than the ILEC mean. With this outlier of 53.0, the CLEC mean is 9.9 compared to the ILEC mean of 8.3. However, without the outlier, the CLEC mean is less than the ILEC mean, 5.6. The cumulative distribution for this hypothetical data is presented in Attachment 6 and illustrates that typically the CLEC received better (simulated) performance than the ILEC. In this case, the log transformation analysis reflects typical performance more than average performance in that reduces the effect of the outlier and identifies these results as a performance “success” (p = 0.97).



� The terms “days” and “orders” are used for illustrative purposes and do not necessarily represent the actual units. Because of possible proprietary data issues the actual terms are not used.




