COM/MGA/lil

Date of Issuance 5/15/2017

Decision 17-05-014 May 11, 2017

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in those Disadvantaged Communities.

Rulemaking 15-03-010 (Filed March 26, 2015)

DECISION ADOPTING METHODOLOGY FOR IDENTIFICATION OF COMMUNITIES ELIGIBLE UNDER SECTION 783.5 AND PROVIDING GUIDANCE ON ECONOMIC FEASIBILITY STUDY TO BE COMPLETED IN PHASE II

TABLE OF CONTENTS

<u>Title</u>

<u>Page</u>

DEC	CISIC	N ADO	OPTING N	METHODOLOGY FOR IDENTIFICATION OF			
COMMUNITIES ELIGIBLE UNDER SECTION 783.5 AND PROVIDING							
GUIDANCE ON ECONOMIC FEASIBILITY STUDY TO BE COMPLETED							
IN PHASE II1							
Sum	Summary						
1.	Background						
2.	Issue	sues Before the Commission					
3.	Disc	ussion	ion and Analysis				
	3.1.	Wheth	er the pro	r the proposed list of disadvantaged communities complies			
		with st	tatutory r	y requirements of § 783.57			
	3.2.	2. Identification of categories of costs and benefits associated with					
		(a) the	current e	nergy condition of the identified communities			
		resulting from lack of natural gas service and (b) extending					
	natural gas pipelines to those communities11						
	3.3.	Identif	fication of	energy programs or tariffs available to the			
		identif	ied disad	vantaged communities that could increase			
		access	to afforda	able energy18			
		3.3.1.	Energy P	Programs and applicable tariffs under Commission			
			jurisdicti	on19			
			3.3.1.1.	Natural Gas Pipeline Extension Rules			
			3.3.1.2.	The California Alternate Rates for Energy (CARE)			
				and the Energy Savings Assistance (ESA) programs 20			
			3.3.1.3.	Baseline Programs - the All Electric Baseline and			
				Medical Baseline			
			3.3.1.4.	Self-Generation Incentive Program			
			3.3.1.5.	Rooftop Solar Programs			
			3.3.1.6.	Energy Efficiency Programs			
			3.3.1.7.	Demand Response			
			3.3.1.8.	Green Tariff Shared Renewables Program			
			3.3.1.9.	Electric Vehicle Grid Integration Pilot Programs 30			
			3.3.1.10.	Short-Lived Climate Pollutants			
			3.3.1.11.	The Electric Program Investment Charge (EPIC) 31			
			3.3.1.12.	Natural Gas Research and Development Program 32			

TABLE OF CONTENTS (Cont'd)

<u>Title</u>

<u>Page</u>

	3.3.2. Energy Assistance Programs not under Commission			
	Jurisdiction	33		
	3.4. Definition and Methodology for Evaluating Economic Feasibility	34		
	3.5. How to group the identified communities in order to facilitate the			
	economic feasibility study for each possible option	36		
4.	Safety Considerations	38		
5.	Phase II			
6.	Comments on Proposed Decision			
7.	Assignment of Proceeding	39		
Find	dings of Fact	39		
Con	nclusions of Law	43		
ORDER				
Atta	achment A – Assembly Bill 2672			
Atta	achment B - Public Version of the Data Working Group's Final Report			

DECISION ADOPTING METHODOLOGY FOR IDENTIFICATION OF COMMUNITIES ELIGIBLE UNDER SECTION 783.5 AND PROVIDING GUIDANCE ON ECONOMIC FEASIBILITY STUDY TO BE COMPLETED IN PHASE II

Summary

This decision resolves Phase I issues so that potential energy options may be evaluated for economic feasibility and implementation in the next phase. The Commission opened Rulemaking 15-03-010 pursuant to California Public Utilities Code Section 783.5, which seeks to increase access to affordable energy in disadvantaged communities in the San Joaquin Valley. Section 783.5 directs the Commission to evaluate the economic feasibility of extending natural gas service, increasing subsidies in electricity, and other potentially economically feasible energy options.

As a first step, we adopt a methodology and identify communities in compliance with the requirements of Section 783.5. The eligible communities have been compiled based on statutory requirement and presented to the Commission in an interactive tool which allows users to group and sort communities based on various characteristics such as number and percentage of residential customers without gas service. To provide a baseline against potential energy options, aspects of the current energy condition of San Joaquin Valley communities have also been identified.

For the option of extending gas service, we have identified the affected communities and the number of households in the San Joaquin Valley that receive electric service from investor-owned utilities but lack gas service. In addition to the current gas rules which govern the extension of gas service, we adopt additional non-financial factors to be considered in the economic feasibility study.

- 2 -

For the options of increasing electric subsidies and modifying or creating new affordable energy programs, we identify existing energy programs and pending Commission proceedings that could be modified for or targeted to the San Joaquin Valley.

This decision provides guidance on how economic feasibility may be evaluated and analyzed for these programs in the next phase.

1. Background

On September 26, 2014, Governor Edmund G. Brown, Jr. signed Assembly Bill (AB) 2672¹ into law and amended the California Public Utilities Code to include § 783.5,² which seeks to increase affordable access to energy for disadvantaged communities in the San Joaquin Valley and to improve the health, safety and air quality of these communities. The statute is particularly focused on assisting low income households in disadvantaged communities that lack natural gas service. Households without natural gas must rely on electricity, propane or wood burning to fulfill their space heating, water heating, and cooking needs.³

Pub. Util. Code § 783.5 directs the Commission to:

- Identify disadvantaged communities in the San Joaquin Valley meeting specific income, geographic, and population requirements; and
- Open a proceeding to evaluate the economic feasibility of extending natural gas pipelines, increasing subsidies, and

¹ AB 2672 is attached to this decision as Attachment A.

² All references to code sections refer to the California Public Utilities Code, and Appendix A to this rulemaking provides the full text of Pub. Util. Code § 783.5.

³ AB 2672 Analysis at <u>http://www.leginfo.ca.gov/pub/13-14/bill/asm/ab_2651-</u>2700/ab_2672_cfa_20140404_153036_asm_comm.html.

other options intended to improve affordable access to energy for the identified communities.

On March 26, 2015, the Commission issued the Order Instituting Rulemaking (OIR) for this proceeding. We designated the Investor-Owned Utilities (IOUs) (Pacific Gas and Electric Company (PG&E), Southern California Edison Company (SCE), and Southern California Gas Company (SoCal Gas))⁴ as respondents and directed the IOUs to jointly submit a list of potential "disadvantaged communities" as defined by § 783.5. On May 4, 2015, the Greenlining Institute (Greenlining), SoCalGas, PG&E, SCE, the Office of Ratepayer Advocates (ORA), the Coalition of California Utility Employees (CUE) and the Joint Minority Parties⁵ filed comments to the OIR. On May 12, The Utility Reform Network (TURN) filed a motion to late-file its comments to the OIR, which was granted and TURN filed its comments on May 18, 2015. On May 18, 2015, the California Rural Legal Assistance Inc. (California Rural) filed a motion for party status; and the Joint Minority Parties, PG&E, and SoCalGas filed reply comments.

A Prehearing Conference (PHC) was held in the Commission's San Francisco office on July 6, 2015. During the PHC, parties discussed party status, anticipated scope of the proceeding, as well as procedural and scheduling issues related to the proceeding.

⁴ SCE, SoCalGas and PG&E may be jointly referred to as the IOUs or Respondents.

⁵ The Joint Minority Parties consist of the National Asian American Coalition, the Ecumenical Center for Black Church Studies, the Jesse Miranda Center for Hispanic Leadership, Orange County Interdenominational Alliance, Christ Our Redeemer AME Church, and the Los Angeles Latino Chamber of Commerce.

On November 12, 2015, a Public Participation Hearing (PPH) was held in Allensworth, California. At the PPH, members of the community expressed their views on the proceeding, described their current energy sources, as well as the assistance they hope to receive from the utilities and the Commission.

On December 9, 2015, the assigned Commissioner issued a Scoping Memorandum (Scoping Memo). In the Scoping Memo, Phase I of this proceeding was reserved to identify eligible disadvantaged communities and potential energy options; create criteria to group communities with like characteristics; and determine appropriate factors and methodologies to evaluate economic feasibility. The Scoping Memo directed parties to answer questions related to proposed workshop topics. On January 29, 2016, PG&E, SCE, SoCalGas, the Joint Minority Parties, CUE, TURN, Natural Resources Defense Council (NRDC) and Sierra Club jointly, and the Leadership Counsel for Justice and Accountability (Leadership Counsel) filed comments on the Scoping Memo as well as their responses to the Scoping Memo questions. On February 17, 2016, SoCalGas, PG&E, TURN, the Joint Minority Parties, and CUE filed reply comments. On February 24, 2016, at a PHC held in the Commission's San Francisco office, the Data Working Group⁶ and Survey Working Group⁷ were created. The Data Working Group is responsible for compiling and analyzing available data on the potential communities and creating a list that can be sorted based on criteria such as distance to the nearest gas pipeline,

⁶ The Data Working Group is made up of representatives from PG&E, SCE, SoCalGAs, ORA, and Energy Division staff from the Commission.

⁷ The Survey Working Group is made up of representatives from PG&E, SCE, SoCalGas, TURN, Sierra Club, NRDC, ORA, Greenlining, the town of Allensworth, the Center for Accessible Technology, the Leadership Counsel, and CUE.

percentage of households not served by natural gas, number of households in the community. The Survey Working Group was tasked with identifying additional information that is needed on affected households in the communities and to recommend a means of collecting this data, in order to more efficiently evaluate the energy options.

Since that time, the working groups have met via teleconferences and two workshops were held April 16, 2016 and August 31, 2016 at the Commission. The Data Working Group has submitted various cost estimates for gas line extensions, as well as a final report on eligible communities.

The Survey Working Group has also met via teleconference and submitted preliminary proposals on both the methodology and selection criteria for surveys to be conducted in Phase II.

2. Issues Before the Commission

Pursuant to the Scoping Memo, Phase I of the Rulemaking (R.) 15-03-010 addresses the following issues:

- A. Whether the proposed list of disadvantaged communities complies with statutory requirements of § 783.5.
- B. Identification of costs and benefits associated with a) the current energy conditions of the identified communities resulting from lack of natural gas service and b) extending natural gas pipeline to those communities.
- C. What existing energy programs and tariffs are available to the identified communities and whether they have been fully utilized.
- D. Identification of new energy alternatives to increase access to affordable energy in the identified communities.
- E. Definition and methodology for evaluating "economic feasibility."

- F. How to group the identified communities in order to facilitate the economic feasibility study for each possible option.
- G. Identification of any safety issues.

3. Discussion and Analysis

3.1. Whether the proposed list of disadvantaged communities complies with statutory requirements of § 783.5.

Pursuant to § 783.5, a San Joaquin Valley disadvantaged community is in the counties of Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, or Tulare. It must also meet the following criteria:

- At least 25 percent of residential households with electrical service are enrolled in the California Alternate Rates for Energy (CARE) program
- Has a population greater than 100 persons within its geographic boundary; and
- Has a geographic boundary no further than seven miles from the nearest natural gas pipeline.

Pursuant to the OIR, the IOUs' initial proposed list of eligible communities included a description of the data sources and methodology used in arriving at the list. PG&E, SoCalGas and SCE used different data sources⁸ and inconsistent definitions. For example, it was unclear whether distance to the nearest natural gas pipeline should be calculated from the center or the outside boundary of a

⁸ In their initial response filed with the Commission on May 4, 2015, PG&E used 2010 census data to estimate population while SCE used the dataset originally developed by Athens Research to support the IOUs required filings in the low income proceeding. SCE reviewed population estimates from the US Census American Community Survey, as well as estimates provided by a third-party vendor, Applied Geographic Solutions. SoCalGas took results from both PG&E and SCE and found communities within seven miles to its distribution or transmission line.

community; the IOUs also questioned whether "pipeline" referred to distribution or transmission natural gas pipelines.

In addition, parties differed in their interpretation of § 783.5 and the definition of "disadvantaged community." Greenlining and the Leadership Counsel proposed potentially expanding the definition of disadvantaged communities beyond criteria identified in the statute,⁹ while ORA, the Joint Minority Parties and TURN sought to prioritize eligible communities in light of unidentified funding resources.¹⁰

To make informed policy decisions and effectively implement § 783.5, it is critical to properly and thoroughly identify eligible communities. Through rulings, discussions at the PHCs and workshops, and the formation of the Data Working Group, the assigned Administrative Law Judge (ALJ) directed parties to assemble a list of disadvantaged communities using consistent data sources, methodology and definitions.

The Data Working Group was open to any interested party that wished to participate, and ultimately settled on a set of data sources and methodology in assembling the eligible communities. The boundaries of communities were identified by city or Census Designated Places (CDPs). In order to be as inclusive as possible, the Data Working Group defined the seven-mile distance to be the minimum of the distance from the center of a community, and the distance from its outside boundary; "natural gas pipeline" was defined to include both transmission and distribution lines. To most accurately estimate population and

⁹ See Greenlining Comments to OIR at 2 and Leadership Counsel Comments on Scoping Memo at 1.

¹⁰ See ORA Comments to OIR at 2 and TURN Reply Comments to OIR at 4.

CARE enrollment in each of the communities, the working group relied on data developed by Athens Research to comply with low income proceeding filing requirements at the Commission.¹¹ The Data Working Group limited its analysis to communities that receive at least partial electric service from an IOU.

The Data Working Group presented its final report to the Commission on September 26, 2016 (Final Report).¹² In addition to identifying disadvantaged communities in the San Joaquin Valley, the Final Report collected data such as the total number of households receiving electric service, households not served by natural gas, minimum distance to gas pipeline, gas and electric service levels, community size, gas and electric providers, etc. Parties to the proceeding agree that the 170 communities included in the Final Report meet the criteria defined by § 783.5. Through comments, the Leadership Counsel recommended adding sixteen communities as fitting the statutory criteria.¹³ On March 24, 2017, the assigned ALJ issued a ruling requiring the IOUs to explain the exclusion of these sixteen communities. The IOUs submitted their response on March 28, 2017.¹⁴ The IOUs' response states that six of the sixteen communities were excluded due to insufficient CARE enrollment, and that the ten remaining communities could not be identified as CDPs or cities.¹⁵ We defer to Phase II a broader consideration of communities with at least 25 percent CARE-eligible customers but less than

¹¹ Athens Research is the statewide contractor supporting all IOUs for all of their low income filings.

¹² See public version of the Data Working Group's final report as Attachment B.

¹³ See Comments of Leadership Counsel on Scoping Memo (Scoping Memo Comment) - Attachment A filed on February 1, 2016.

¹⁴ See IOUs' Response to E-mail ruling filed on March 28, 2017.

¹⁵ The 10 communities are Alkali Flats, Earlimart Trico Acres, Five Points, Hardwick Kings, Hypericum (Dog Town), Madonna, Perry Colony, Ripperdan, Rolinda, and The Grove.

25 percent enrollment, as may be the case for the six excluded communities. To further ensure that eligible communities are not excluded, we direct the IOUs to work with Leadership Counsel in assessing the eligibility of these ten communities. The Leadership Counsel is directed to provide additional identifying information such as specific geographic location and population for these ten communities and the IOUs and the Leadership Counsel shall submit a report to the Commission within thirty days of this decision on their findings. In Phase II of this proceeding, we will consider including these communities for the options of extending natural gas pipelines or all electric investments.

As further discussed in Section 3.5 of this decision, the Final Report will be used to group eligible communities based on shared characteristics in our study of potential energy options. We note that the Final Report includes only communities that receive at least partial electric service from an IOU, and only considers the CARE enrollment status of those households served by an IOU. Some communities in the San Joaquin Valley are served by Publicly-Owned Utilities (POU) for their electricity and/or natural gas. To the extent those communities have residents that are or could become IOU customers, are not currently included in the Final Report, and otherwise meet the eligibility requirements of § 783.5, we will consider their inclusion in Phase II by issuing additional guidance with a new Scoping Memorandum.

The 170 communities in the Final Report represent approximately 890,000 households, and roughly 29,000 of these households lack natural gas.¹⁶ While households and communities without natural gas service are a primary

¹⁶ See Report In Advance Of Workshop filed on August 29, 2016 by ORA, SCE, PG&E, and SoCalGas.

focus of AB 2672, a community mostly to wholly served by natural gas can still be a disadvantaged community under § 783.5. The Commission finds that the list of 170 communities proposed in the Final Report complies with § 783.5. We also find that the methodology and definitions used by the Data Working Group complies with the statutory requirements of § 783.5 and adopt it here. Since population and CARE enrollments are subject to change over time, a community previously not eligible to programs under this proceeding may later become eligible, while other communities may lose their previous eligibility. In Phase II, we will consider whether a mechanism to add/remove eligible communities should be adopted. We defer to Phase II consideration of whether to include communities or households within the service territory of a natural gas IOU that lack natural gas and receive electric service a POU. We also defer to Phase II consideration of whether natural gas penetration levels should be updated to account for the presence of a gas POU in a community.

3.2. Identification of categories of costs and benefits associated with (a) the current energy condition of the identified communities resulting from lack of natural gas service and (b) extending natural gas pipelines to those communities

The current energy condition of the eligible communities and households without natural gas serve as baselines against which to evaluate energy options in this proceeding. Since gas extension must be considered as an option, the Commission sought to identify costs and benefits for extending natural gas service in the first phase. While parties proposed factors and methodologies to be considered, there was no consensus on a matrix to be used in weighing the various factors nor sufficient data to evaluate specific household information. This decision relies on the 2016 Low Income Needs Assessment (LINA) Study and the CalEnviroScreen tool to identify the general energy condition of the eligible communities. To evaluate the energy condition of households using propane, electricity and wood burning respectively, the Commission will collect additional data through working groups, energy option assessment meetings in some of the eligible communities, and/or surveys or other studies in the second phase. For gas extensions, the Commission views the current applicable gas rules and cost estimates submitted by the IOUs as a starting place, pending additional input from the parties and consideration of historical gas rules.

(a) Cost and Benefits Associated with Current Energy Condition of the Identified Communities

Residents without natural gas spend more on their energy usage because the costs of alternative fuel sources are significantly higher than natural gas.¹⁷ The Leadership Counsel and the Joint Minority Parties state generally that the costs/benefits of current energy conditions should include financial considerations as well as those of public health, safety, and the environment.¹⁸ During the February 24, 2016 PHC and in comments, parties urged the Commission to utilize the CalEnviroScreen tool to identify the San Joaquin Valley communities that are disproportionately burdened by multiple sources of pollution.¹⁹

¹⁷ AB 2672 Legislative Analysis at <u>http://www.leginfo.ca.gov/pub/13-14/bill/asm/ab_2651-2700/ab_2672_cfa_20140404_153036_asm_comm.html</u>.

¹⁸ See Comments filed by Leadership Counsel on February 2, 2016 at 2.

¹⁹ See February 24, 2016 Prehearing Conference Transcript at 72 line 16-19.

In conjunction with party comments, the LINA study and the CalEnviroScreen tool provide insight into the general energy condition in San Joaquin Valley communities.

The 2016 LINA study was ordered by Decision (D.) 14-11-025 and provides updated information to support program and regulatory decisions related to the needs of low income customers eligible for the Energy Assistance Savings (ESA) and CARE programs. The LINA study, as statutorily mandated, addresses all low income households in California and not just a specific segment. However, to the extent possible, the 2016 LINA study explored the energy burden of households in the San Joaquin Valley.²⁰ The 2016 LINA study drew upon a 2016 telephone survey of 905 households, phone interviews and in-person visits to community-based organizations (CBOs), focus groups with high burden customers, and prior low-income studies (including the 2013 LINA). Of the 905 telephone surveys completed, 198 were from households in the San Joaquin Valley,²¹ allowing for analysis of general energy condition in those communities. Of the four focus groups conducted on low income customers with high energy burdens, two were conducted in Fresno with 15 participants from San Joaquin communities.²² The 2016 LINA study shows that low income households in the Central Valley region face the highest level of energy burden in California as

²⁰ The 2016 Low Income Needs Assessment Final Report can be accessed at <u>http://www.cpuc.ca.gov/iqap/</u>.

²¹ See LINA study Final Report, Vol. 1 at 24.

²² See LINA study Final Report, Vol. 1 at 30.

related to their income.²³ CalEnviroScreen²⁴ is a tool developed by the Office of Environmental Protection Agency (CalEPA) pursuant to Senate Bill (SB) 535 (De Leon).²⁵ The tool is used by CalEPA and other agencies to identify disadvantaged communities disproportionately affected by multiple sources of pollution. CalEnviroScreen ranks census tracts in California based on potential exposures to pollutants, adverse environmental conditions, socioeconomic factors and prevalence of certain health conditions.²⁶ A comparison of CalEnviroScreen's top 25 percent ranked census tracts in California to communities identified in this proceeding reveal significant overlaps.²⁷

To provide a framework for assessing the current energy condition of households in the disadvantaged communities, parties submitted proposals identifying both quantifiable data and qualitative factors to be considered. In Phase II, the Commission will gather data concerning the estimated number of customers in eligible communities who rely on each of the relevant fuel sources (natural gas, wood, propane or electricity) and direct costs to the household – for example, utility bills, fuel costs, and other costs of maintaining and operating

²³ See LINA Study Final Report, Vol. 1 at 49. We note that due to program constraints (study of electric and gas usage only), the LINA study does not include the cost of alternative fuel sources such as propane and wood burning in calculating energy burden.

²⁴ The most current version of this tool is CalEnvironScreen3.0 at <u>https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-30</u>.

²⁵ SB 535 directed that a quarter of the proceeds from the Greenhouse Gas Reduction Fund must also go to projects that provide a benefit to disadvantaged communities. A minimum of 10 percent of the funds must be for projects located within those communities.

²⁶ See CalEnviroScreen FAQs at <u>https://oehha.ca.gov/calenviroscreen/calenviroscreen-faqs</u>.

²⁷ See Calenviroscreen 2.0 interactive map at

http://oehha.maps.arcgis.com/apps/Viewer/index.html?appid=dae2fb1e42674c12a04a2b302a 080598.

energy-related equipment. In addition, we adopt TURN's proposal to evaluate the cost and benefits of fuel sources separately.²⁸ For each of these fuels, the Commission will evaluate: (1) The relative emissions of Greenhouse Gas (GHG) per Million British Thermal Unit (MMBtu); (2) The relative emissions of criteria pollutants per MMBtu; (3) The relative cost of heating per MMBtu; and (4) Any other quantitative or qualitative factors identified that may impact customer health, comfort or safety.

(b) Categories of Cost and Benefits for Extending Natural Gas pipelines

Section 783.5 (b)(2)(A) directs the Commission to analyze the option of extending natural gas service. As such, the commission sought to identify categories of costs and benefits for extending natural gas service to facilitate the economic feasibility study in the next phase. The cost of extending natural gas pipelines varies greatly based on terrain, distance, pipe width, etc.

Pursuant to rulings issued by the assigned ALJ, workshops were held at the Commission's San Francisco office on April 25, 2016 and August 31, 2016. At the April 25, 2016 workshop, PG&E presented on its Gas Rules 15 (extension of main lines) and 16 (extension of service lines), and SoCalGas presented on its Gas Rules 20 (extension of main lines) and 21 (extension of service lines). PG&E and SoCalGas rely on these rules in evaluating the cost effectiveness of extending gas main and service extensions.

At the August 31, 2016 workshop, the IOUs presented cost figures for three gas extension projects recently completed in the San Joaquin Valley. On

²⁸ TURN proposed evaluating the cost and benefits of propane, electricity, and wood burning only. In order to provide a basis for comparison, we include evaluation of households with natural gas service.

September 9, 2016, the assigned ALJ issued a ruling directing the IOUs to select ten representative communities with different levels of gas service and distance to the nearest natural gas pipeline and to submit cost estimates for extending gas service to those communities.²⁹

In cost estimates submitted by PG&E and SoCalGas on October 12, 2016 for 10 representative communities, the total estimated cost of bringing gas service to the meters of individual households ranged from \$1,341,927 for Huron (\$16,567 per household) to \$69,458,622 for Madera Acres (\$28,630 per household). Due to the differences in population density, the cost on a per-household basis also ranged widely, from \$4,143 per household in California City to \$83,522 per household in the City of Selma.³⁰ The cost drivers for these estimates include need for regulator stations, transmission line extensions, and distribution line distances that need to be built. In addition, utilities only provided cost estimates for extending service to each household meter. The households would then have to retrofit their homes and purchase gas appliances to accommodate gas service.

Parties generally agreed through comments and at workshops that the Gas Rules are good starting places to evaluate the economic feasibility of extending

³⁰ October 12, 2016, Response filed by Southern California Gas Company Conf # 102668; NATURAL GAS SERVICE EXTENSION COST ESTIMATES FOR REPRESENTATIVE COMMUNITIES PURSUANT TO EMAIL RULING

http://docs.cpuc.ca.gov/SearchRes.aspx?DocFormat=ALL&DocID=168811114. October 12, 2016, Response filed by Pacific Gas and Electric Company Conf # 102487; Cost Estimates For Identified Communities

http://docs.cpuc.ca.gov/SearchRes.aspx?DocFormat=ALL&DocID=168810560.

²⁹ The Data Working Group selected Allensworth, Cressey, Dulcor, El Nido, Johannesburg, Lavina, Le Grand, Lindclove, Seville, Stevinson, Valley Home, Volta, and West Goshen as representative communities to perform gas extension cost estimates. These communities range in number of households, distance to the nearest gas pipeline, and existing level of gas service.

natural gas pipelines. TURN and the Leadership Counsel suggested that Commission consider providing larger residential allowances or for ratepayers to subsidize costs in excess of the residential allowances in order to fund the extensions.³¹ The Leadership Counsel specifically references historical gas rules, which provided significantly higher allowances in evaluating the cost effectiveness of gas extensions.

SoCalGas suggests that to the extent fuel switching (from wood to natural gas) reduces GHG emissions, the Commission should explore eligibility for cap and trade dollars.³² The Leadership Counsel, Joint Minority Parties, CUE and the Sierra Club/NRDC believe that non-financial factors including health, safety, and environmental impact of the extension should be also be considered in our cost benefit analysis. Sierra Club/NRDC also recommended that the Commission consider a method for calculating the cost effectiveness of fuel switching. The method was brought before the Vermont Public Service Board by the Energy Futures Group, in a proceeding that considered extending natural gas transmission and distribution lines to counties in Vermont that relied on oil or propane for space heating.³³

In addition to actual costs of extending natural gas pipelines and other non-financial factors, the Commission must also consider California's long term environmental goals. SB 350 mandates that regulated utilities procure 50 percent

³¹ See TURN Comment on Scoping Memo at 8 and the Leadership Counsel Comment on Scoping Memo at 3.

³² See Response of SoCalGas to Scoping Memo questions at 6.

³³ See Sierra Club/NRDC Comment to Scoping Memo, Attachment 2.

of their electricity from renewable sources by 2030 and calls for a 50 percent increase in energy efficiency in new buildings.

3.3. Identification of energy programs or tariffs available to the identified disadvantaged communities that could increase access to affordable energy

Section 783.5 (b)(2)(B) directs the Commission to consider increased subsidies for electricity and other energy options. In the Scoping Memo, existing energy programs and new energy alternatives were separate issues. As the proceeding evolved, it was clear that energy options should be considered collectively. This approach allows for potential integration and collaboration between programs and entities. This section seeks to identify existing programs, their potential modifications, as well as any new programs that could be created.

Under § 783.5, the Commission is tasked with "taking appropriate action and finding appropriate funding sources" for economically feasible energy options, once they have been identified. Rather than creating new programs which would need to be funded, we identify here pending proceedings at the Commission with low income components that can assist households in the San Joaquin Valley. If pending programs with identified funding can be tailored for the San Joaquin Valley, it would ensure more timely assistance to eligible households and minimize additional costs to ratepayers to fund new programs.

Before modifying existing programs or creating new ones, we sought to identify existing energy programs that could be leveraged to more efficiently increase access to affordable energy. To that end, the IOUs submitted information on low income energy programs, tariffs, and participation rates when available. Other parties submitted comments identifying barriers to participation in these programs, as well as proposals to improve outreach and enrollment by eligible low income households. These proposals also recommended increasing subsidies by modifying program rules or eligibility requirements.

To avoid duplicity of effort, we also asked parties to submit information on low income programs not under Commission jurisdiction. We also include information in this Decision on other potentially relevant programs under Commission oversight. While we have made every attempt to include relevant programs both under Commission oversight and not under our jurisdiction, we recognize that many programs are potentially available to customers, and this list of programs and other energy options may not be complete. In particular, as the economic feasibility analysis is conducted in Phase II, a deeper dive in priority communities may reveal particular programs that could be leveraged in communities with nearby state parks, prisons, schools, or other institutions.

3.3.1. Energy Programs and applicable tariffs under Commission jurisdiction

In the sections below, we discuss current programs and identify potential areas for increased effectiveness and/or modification. Some of these programs specifically serve low income customers, while others serve all residential customers. There are still other programs that address resource planning and improving energy infrastructure in low income communities.

3.3.1.1. Natural Gas Pipeline Extension Rules

Natural gas pipelines can be extended to households lacking service in accordance with PG&E Gas Rules 15 (extension of main lines) and 16 (extension of service lines), and SoCalGas Gas Rules 20 (extension of main lines) and 21 (extension of service lines). These rules have evolved over time, and in Phase II the Commission may evaluate the appropriateness of piloting altered gas

extension rules. The Commission may also explore opportunities to leverage any trenching activities to upgrade other utilities and share costs, as well as any overlap with the California Advanced Services Fund, which increases access to broadband services as authorized in D.07-12-054.

3.3.1.2. The California Alternate Rates for Energy (CARE) and the Energy Savings Assistance (ESA) programs

CARE and ESA are two of the main low income subsidy programs administered by the Commission. CARE provides a discount on tiered rates for electric and gas bills for households at or below 200 percent of the federal poverty guideline. In 2016, CARE customers on average received an approximately 20 percent discount on their gas bill and between 32-39 percent on their electric bill.³⁴ ESA provides free energy efficiency upgrade and weatherization services for income eligible households. Energy efficiency measures include installation of energy efficient light bulbs, weather stripping, repair/replacement of furnaces, evaporative coolers, and/or refrigerators.

In their application for the 2015 -2017 CARE and ESA program, the IOUs estimate that 84 percent of eligible households in California are enrolled in the CARE program, while 54 percent of eligible households have participated in ESA.³⁵ However, some of the disadvantaged communities identified in this Decision have enrollment rates that are significantly below the state average.³⁶

The CARE Program encounters language, cultural, and ethnic barriers to customer participation. ESA Program participation barriers include:

³⁴ See IOU CARE and ESA Programs annual report.

³⁵ See Applications (A.) 14-11-007, 14-11-009, 14-11-010, and 14-11-011.

³⁶ See Amended Joint Response of IOUs submitted on August 21, 2015.

1) customer distrust of contractors; 2) missed customer appointments; and 3) perception that the household has no need of the program offerings.³⁷ Potential solutions to these barriers include increased use of CBOs in targeted communities to educate customers about the program offerings and benefits. Another solution would be to develop specific strategies and marketing plans to reach residents of the communities identified in this proceeding, such as door-to-door canvassing, use of in-language messaging (where feasible), and participation at local community events. While the CARE and ESA programs are generally overseen in and subject to the rules of the CARE/ESA proceeding (A.14-11-007 et al.), perhaps an additional solution for the communities targeted in this proceeding might be to offer programs or services that are coordinated with but additional to the basic CARE/ESA programs, so that targeted households find the overall IOU offerings better meet their particular needs.

Currently, R.12-06-013, in which the Commission is evaluating options for reforming the structure of residential electricity rates, is considering options to modify the structure of the CARE discount. Proposals for CARE restructuring are not due until later in 2017, but the proposals may include allowing CARE customers to use their CARE discount to obtain renewable energy from resources procured by IOUs. R.12-06-013 is also considering the potential impacts of default time-of-use rates on vulnerable customers.

PG&E and SCE oppose increasing subsidies in existing programs like CARE and ESA, stating that the current frameworks already provide assistance to low income households and are operating effectively.³⁸ SoCalGas, the Joint

³⁷ See 2013 LINA Report at 3-17.

³⁸ See PG&E and SCE's Opening Comment to Scoping Memo filed on January 29, 2016.

Minority Parties, TURN and the Leadership Counsel believe that existing programs present an opportunity to make significant impact in low income communities without having to create new programs.³⁹

In light of the extensive program revisions adopted on November 10, 2016, in D.16-11-022, on large IOUs' CARE and ESA program applications,⁴⁰ and in light of the consideration of CARE rates as part of R.12-06-013, we will not consider modifying CARE/ESA subsidies in the second phase of this proceeding. To increase enrollment in under-enrolled communities, D.16-11-022 directs the IOUs to conduct workshops and devise marketing and outreach plans that would improve enrollment in communities with participation rates below the average for the IOUs' service territory. We reaffirm that direction here, and encourage the IOUs to focus in particular on the communities identified in this Decision. Additionally, while we will not modify the CARE/ESA programs, in Phase II we may consider new program services or offerings that could be delivered in a coordinated manner with the existing CARE/ESA programs and would offer additional assistance to the communities identified pursuant to § 783.5, like assisting in the payment of electric appliances.

3.3.1.3. Baseline Programs - the All Electric Baseline and Medical Baseline

A number of low income programs and tariffs are based on allowances above "baseline" usage. The 1976 Warren-Miller Lifeline Act established

³⁹ See parties' opening comments to Scoping Memo.

⁴⁰ D.16-11-022 extensively revised program guidelines for ESA by allowing re-treatment of a home that has been visited by ESA in the last ten years, adding additional program offerings, and removing the 3 measure minimum. The CARE program has been revised to streamline the income verification process and to prioritize households consuming 400 percent of baseline for ESA participation.

Section 739, the baseline statute, in response to the energy price spikes of the late 70s. The baseline provides an energy allowance for basic energy needs at a lower rate and is set at between 50-70 percent of average household consumption. Electric baseline amounts vary by climate zone and season because the amount of energy required to stay reasonably cool in the hot inland areas of the state is larger than the amount needed in coastal areas. There are baseline amounts for natural gas as well, which are larger during the winter to accommodate home heating needs.

To account for different energy needs between customers whose residential energy needs are supplied by electricity alone or by both electricity and gas, § 739 directed the Commission to "develop a separate baseline quantity for all-electric residential customers." For these purposes, "all-electric residential customers" are residential customers having electrical service only or whose space heating is provided by electricity, or both."⁴¹ With this in mind, the larger baseline for all-electric customers takes into account that the amount of electricity required to meet basic energy needs (such as heating in the winter) is larger than in a home with natural gas heating.

The All Electric Baseline is available to households that have permanently installed electric heating that serves as the primary source for heat and to households in which electricity is the only source of energy in the housing unit.⁴² While it is not an income qualified program, low income households without natural gas service would benefit from an increased allowance in their electric

⁴¹ See Pub. Util. Code § 739.

⁴² See i.e., PG&E tariff sheet found at

https://www.pge.com/tariffs/tm2/pdf/ELEC_SCHEDS_E-1.pdf.

baseline. Currently, the IOUs do not allow homes heated by propane and wood to enroll in the All Electric Baseline.

In Phase II of this proceeding, the Commission will evaluate the economic feasibility of modifying the All Electric Baseline program by: (1) increasing baseline quota for enrolled CARE households; and (2) allowing enrollment by CARE households with propane or wood burning as energy sources.

Medical Baseline is a financial assistance program for residential customers that have special energy needs due to certain qualifying medical conditions. Medical baseline was also established in the Baseline Act of 1976, which authorized baseline for all customers. The act directed the Commission to provide larger quantities of power at the baseline rate to residential customers who have special medical needs and/or are dependent on life-support equipment. A list of conditions and devices are specified in statute.

Eligible customers may receive a "standard" Medical Baseline quantity of approximately 500 kilowatt-hours of electricity and/or 25 therms of gas per month, in addition to regular Baseline quantities. A customer must provide certification from a doctor of a covered medical condition and confirm residency at the place of abode. Requiring life support equipment or a medical condition are ways to receive incremental baseline allocation.

Neither the Commission nor the IOUs track medical conditions of ratepayers, it is therefore difficult to estimate the number of eligible households in the San Joaquin Valley. The 2009 LINA study estimates that 14 percent of low income households have disabled members and an additional 13 percent have

both elderly and disabled members for a total of 27 percent.⁴³ While the Medical Baseline statute specifies covered conditions that may differ from those identified in the LINA study, there are only roughly 80,000 households enrolled in Medical Baseline out of approximately 890,000 households, or only 9 percent.⁴⁴ The IOUs concede that there is no concerted outreach or marketing effort to make ratepayers aware of the Medical Baseline program. In the next phase of the proceeding we will further evaluate the potential gap between eligible households and enrollment in the medical baseline program, as well as steps that could be taken both by the IOUs directly and in conjunction with other state agencies or programs to increase awareness and enrollment amongst eligible households.

In comments to the Proposed Decision, ORA recommended re-categorization of this proceeding from quasi-legislative to rate-setting due to potential rate impacts of changing baseline programs. By identifying potential changes to be evaluated for economic feasibility in Phase II, the Commission has not implemented programs with rate impacts. As such, we do not adopt ORA's recommendation and Phase I of this proceeding remains quasi-legislative.

3.3.1.4. Self-Generation Incentive Program

The Self-Generation Incentive Program (R.12-11-005) provides rebates for the installation of energy storage and renewable generation projects, with a portion of the budget carved out for residential installations. Residential and

⁴³ See 2013 LINA study at Section 5.2.1.2.

⁴⁴ The 80,000 figure is reached by adding all of the households enrolled in Medical Baseline, as supplied by PG&E, SCE, and SoCalGas in their Supplemental Information filed on January 15, 2016.

community scale storage and renewable generation projects are likely to have greater benefit in households and communities that are not utilizing gas.

3.3.1.5. Rooftop Solar Programs

The Multi-family Affordable Solar Housing (MASH),⁴⁵ Single Family Affordable Solar Homes (SASH),⁴⁶ California Solar Initiative (CSI) Thermal, and the Multifamily Affordable Housing Solar Roofs Program (MAHSRP) are residential solar programs. MASH, SASH, and the low income CSI Thermal programs are administered under the CSI, and provide upfront financial incentives to offset the cost of installing solar energy technologies on low income households. MASH and SASH offer financial incentives to install solar photovoltaic systems on multi-family affordable housing and owner-occupied, low income single family home units while the CSI Thermal program encourages installation of gas displacing solar water heating systems. To qualify for the programs, households must meet certain income requirements and the housing units must be deed restricted to remain below market rate housing.

On March 17, 2016, the CPUC approved PG&E Advice Letter 3691-G/4800-E/ CSE Advice Letter 69/SCG Advice Letter 4930 to shift \$25 million from all sectors of the CSI Thermal general market budget to the CSI-Thermal low income budget, increasing the total low income budget to \$50 million. Approximately \$30 million of the budget has been allocated or is under review at the time of this Decision.

⁴⁵ See D.08-10-036.

⁴⁶ See D.07-11-045 which originally created the SASH program. Both MASH and SASH were extended with additional funding from the Legislature and some new program requirements in D.15-01-027.

Under current rules, CSI Thermal incentives do not cover the entire costs of the water heating system. Solar water heating systems that displace natural gas receive significantly higher incentives than systems that displace electricity or propane water heating systems.⁴⁷ For communities without natural gas service, the lowered incentive level would likely keep households from participating in the program.

Separately from the CSI solar programs, AB 693 (Eggman, 2015) directed the Commission to create the MAHSRP. The bill authorizes 10 percent of available utility GHG allowance proceeds or \$100,000,000 annually (whichever is less), for up to ten years, to fund a new program that will offer upfront financial incentives for solar energy systems installed on qualifying multifamily affordable housing properties. AB 693 requires that eligible properties meet a statutory definition of deed-restricted affordable housing and either be located in a disadvantaged community, or have 80 percent of the households with incomes at or below 60 percent of the area median income. Program rules and other implementation details are currently under consideration in R.14-07-002 and have not yet been adopted by the Commission.

A shared barrier to entry to these solar programs is that installations must occur on housing that meets programmatic definitions of qualifying affordable housing. While the policy ensures that the solar systems are built and kept for low to moderate income households that qualify to purchase or rent below market rate homes, it also prevents low income households living in non-qualifying types of housing from being able to access the programs.

⁴⁷ See TURN's Opening Responses of The Utility Reform Network to The Assigned Commissioner's Scoping Memorandum and Ruling addressing Phase I Scope at 10.

In R.14-07-002, developing a successor to existing net energy metering tariffs, the Commission is considering alternatives that would promote adoption of renewable distributed generation by residential customers in disadvantaged communities. Deliberations and alternatives are under consideration in phase II of that proceeding.

For example, the Commission is considering alternatives that would promote adoption of solar by residential customers in disadvantaged communities, including neighborhood virtual net energy metering. On March 14, 2017, the Commission asked for comment on how to ensure growth of solar in disadvantaged communities, including the specific consideration of how to ensure growth in the disadvantaged communities identified in this proceeding.⁴⁸

3.3.1.6. Energy Efficiency Programs

The IOUs offer extensive energy efficiency programs under R.13-11-005. These include programs targeted specifically at multi-family dwellings, whole-house upgrades, financing pilots, Local Government Partnerships, and many other diverse programs that San Joaquin Valley residents are eligible to participate in.

For example, in partnership with PG&E, the City of Fresno, in partnership with PG&E, provides the Home Energy Tune-up program to residents of Fresno, Kings, Kern, Tulare, Madera, San Joaquin County, Merced and Stanislaus who are served by PG&E. The Home Energy Profile is a web-based analytic assessment to identify how a home is using energy and then identify ways to

⁴⁸ See ALJ Ruling Seeking updated Proposals at

http://docs.cpuc.ca.gov/SearchRes.aspx?DocFormat=ALL&DocID=180950179.

reduce that use through simple measures, upgrades or repairs of systems in the home. The Home Energy Tune-up program also offers field audits and phone consultations along with installations and upgrades where appropriate.

Additionally, pursuant to AB 793 (Quirk, 2015), the Commission's energy efficiency and demand response Rulemakings jointly called for the electric and gas corporations to develop a program to provide incentives to residential or small and medium business customers to acquire energy management technologies. In Resolution E-4820, the Commission directed the IOUs to develop specific strategies on how they plan to market these technologies to the communities with the highest disconnection rates in their service territories or in disadvantaged communities.

Finally, we note that the IOUs have significant latitude to consider and propose new programs in their energy efficiency portfolios, and that they may choose to consider measures that might be particularly relevant to households without access to natural gas, such as incentives or financing to encourage the installation of ground and/or air source heat pumps.

3.3.1.7. Demand Response

The IOUs have numerous ongoing demand response programs, for which residents of the communities identified in this decision may be eligible. Additionally, the IOUs recently submitted five-year demand response program applications in A.17-01-012 et al. In its Scoping Memo in that proceeding, the Commission asked if it should "consider whether the Utilities' proposed programs and portfolios adequately focus on locating demand response participants in particular geographic areas, such as disadvantaged communities [... and if so, whether the Utilities could] increase utilization of demand response in disadvantaged communities."

3.3.1.8. Green Tariff Shared Renewables Program

In D.15-01-051, the Commission approved the Green Tariff Shared Renewables (GTSR) Program. The GTSR program implements SB 43 (Stats. 2013, ch. 413 (Wolk)), which sets a formal requirement for the three large electrical utilities to offer two programs to customers: (1) the green tariff program and (2) the enhanced community renewable program. Of the up to 600 megawatts (MW) of energy procured for GTSR programs, SB 43 reserved 100 MW for disadvantaged communities. SB 43 and D.15-01-051 found that renewable energy facilities located disadvantaged communities would create economic activity and jobs, and allow residents of the community to purchase renewable energy from community-based projects. Customers who enroll in either of the GTSR programs could wind up paying higher electricity rates. By reserving 100 MW for disadvantaged communities, the Legislature intended to promote development of renewable projects in those communities. Despite the Legislature's intent, to date we are not aware of any GTSR projects located in disadvantaged communities. D.15-01-051 found that an expanded definition of "community" for the enhanced community renewables program might boost development of enhanced community renewable projects in disadvantaged communities as envisioned by the statute.

3.3.1.9. Electric Vehicle Charging Infrastructure Pilot Programs

PG&E, SCE, and SDG&E are rolling out vehicle charging infrastructure pilot programs in their territories.⁴⁹ All three IOUs have committed to at least ten percent of the charging stations being located in disadvantaged communities

⁴⁹ See D.16-01-023 for SCE, D.16-01-045 for SDG&E, and D.16-12-065 for PG&E.

and to cover the base costs of electric vehicle charging equipment. Pursuant to SB 350, all three utilities are required to address disadvantaged communities in their proposals to accelerate transportation electrification.⁵⁰ Phase II of the proceeding will consider the pilot programs in the limited context of increasing affordable access to energy by low income households.

3.3.1.10. Short-Lived Climate Pollutants

SB 1383 (Lara, 2016) focuses on efforts to reduce dairy methane emissions. The bill directs the Commission to institute a proceeding which will scope out the framework for selecting criteria for a pilot of bio-methane projects as one mechanism for achieving these reductions. According to the California Statistics 2016 Annual Report, the five leading counties in total milk production for 2016, in ranking order, were: Tulare (27.3 percent), Merced (15.2 percent), Kings (10.6 percent), Stanislaus (9.9 percent), and Kern (9.5 percent).⁵¹ These five counties accounted for 72.4 percent of California's total milk production, and the implementation of SB 1683 and § 783.5 could be complementary.

3.3.1.11. The Electric Program Investment Charge (EPIC)

In D.12-05-037, the Commission established the purposes and governance for the EPIC program. The California Energy Commission (CEC) is one of four administrators of the program and must submit coordinated investment plans to the CPUC for consideration. The other designated administrators are

⁵⁰ See A.17-01-020 for SDG&E, A.17-01-021 for SCE, and A.17-01-022 for PG&E.

⁵¹ The California Statistics 2016 Annual is a joint effort of the California Department of Food and Agriculture and the United States Department of Agriculture.

PG&E, SCE, SoCalGas and SDG&E, each of which are charged with administering a portion of the EPIC Program funding.

The portion of the EPIC Program administered by the CEC provides funding for applied research and development, technology demonstration and deployment, and market facilitation for clean energy technologies and approaches for the benefit of ratepayers of PG&E, SDG&E, and SCE through a competitive grant solicitation process. Projects must address strategic objectives and funding initiatives as detailed in the appropriate EPIC Investment Plan.

The CEC has committed to make at least 25 percent of the EPIC investment in disadvantaged communities.

3.3.1.12. Natural Gas Research and Development Program

The Commission oversees the Natural Gas Research, Development, and Demonstration Program, which is administered by the CEC. The program was established by D.04-08-010 and invests in natural gas efficiency, renewables, transportation and other research areas. This program has begun to address and focus on disadvantaged communities and to provide investment and benefits for these communities.

In its most recent budget plan filings, the CEC has identified a number of opportunities to target natural gas energy innovation projects to disadvantaged communities. The most recent Commission draft resolution approving investments in this program provided additional guidance, highlighting opportunities to target project workforce and training benefits.⁵² The CEC's 2017-2018 budget plan, filed March 30, 2017, also identifies a range of ways the

⁵² See Resolution G-3524.

program can expand its focus on disadvantaged communities issues and benefits.

3.3.2. Energy Assistance Programs not under Commission Jurisdiction

There are local and federal low income programs which are not administered by the Commission. The federal Low Income Home Energy Assistance Program (LIHEAP) and Weatherization Assistance Program administered by the California Department of Community Services and Development, are available to customers who meet federal eligibility standards. The California Air Resources Board funds woodstove air pollution reduction and change-outs. Additional grants are offered by Air Quality Management Districts. The utilities have voluntary charitable programs for low-income assistance such as Relief for Energy Assistance through Community Help, sponsored by PG&E and administered by Salvation Army, which provides an energy credit for up to \$300 to offset past-due bills. There is some coordination between the LIHEAP providers and the ESA providers. Local assistance programs vary widely and communities rely on local organizations for outreach and navigation.

Pursuant to SB 350, the CEC issued a Barriers Study Final Report (Barriers Report) on December 14, 2016.⁵³ The Barriers Report "explores the barriers to and opportunities for expanding low-income customers' access to energy efficiency, weatherization, and renewable energy investments. It also examines barriers and opportunities related to contracting with small businesses located in disadvantaged communities."

⁵³ The Barriers Study Final Report, Part A may be accessed at <u>http://www.energy.ca.gov/sb350/barriers_report/</u>.

In addition to studying the barriers for low income households and communities to benefit from renewable energy programs, the Barrier Study puts forth a number of recommendations intended to address structural challenges faced generally by disadvantaged communities. A central goal in this proceeding is to leverage existing resources and improve interprogram coordination between the Commission's proceedings as well as at other related California agencies.

3.4. Definition and Methodology for Evaluating Economic Feasibility

The OIR defines "Economic Feasibility" as the process of determining whether a new venture is worth the cost and time investment.⁵⁴ As the rulemaking has progressed, it became clear that energy options have unique characteristics and need to be evaluated individually.

Our discussion above identifies basic categories of cost and benefits for potential energy options in this rulemaking and this decision adopts general factors to be further refined in the next phase. These factors are developed under the guidance of existing Commission statutes and will be applied as appropriate to the energy options in the next phase. § 701.1(a) states that "a principal goal of electric and natural gas utilities' resource planning and investment shall be to minimize the cost to society...and to improve the environment and to encourage the diversity of energy sources through improvements in energy efficiency and development of renewable energy resources..." Furthermore, § 701.1(c) states that in calculating the cost effectiveness of energy resources, "the commission

⁵⁴ See OIR at 4.
shall include, in addition to other ratepayer protection objectives, a value for any costs and benefits to the environment, including air quality."

The Commission also draws guidance from the administration of the ESA program. When evaluating the cost effectiveness of the ESA framework, the legislature directed the Commission to take into consideration "both the cost effectiveness of the services and the policy of reducing hardships facing low income households."⁵⁵ Consistent with this direction, the ESA Program incorporates non-energy benefits relating to health, comfort, and safety in its cost-effectiveness calculations and overall program design.

Accordingly, the economic feasibility of each identified option in this proceeding will be evaluated based on:

- Direct financial and energy specific costs and benefits of the individual program, including the implementation costs of the program to utilities, ratepayers, and the participating households. Quantifiable benefits including lowered energy costs and increased energy efficiency.
- Direct health, comfort, and safety impacts of the option on participating households.
- Indirect costs and benefits to society and the environment, including improved air quality in the community, reduced GHGs, and increased diversity in energy sources.

These factors will be considered in conjunction with cost and benefit categories for each of the identified energy options.

⁵⁵ See § 2790(a).

3.5. How to group the identified communities in order to facilitate the economic feasibility study for each possible option

Rather than conducting separate economic feasibility studies for each energy option in each disadvantaged community, the Scoping Memo anticipated grouping communities by like characteristics so that resources can be allocated efficiently.⁵⁶ For the option of extending gas service, parties generally agreed that proximity to the nearest natural gas pipeline should be used as the primary grouping criteria. The Joint Minority Parties also recommends that communities be further grouped by their rank on the CalEnviroScreen tool, which takes into consideration poverty and pollution levels.⁵⁷ To evaluate other energy options, NRDC and the Sierra Club recommend grouping by current source of fuel for space and water heating.

As discussed above, the Final Report allows the user to sort or group eligible communities based on relevant data as collected during this proceeding. For example, the Final Report can be sorted to identify communities representing the highest number of households without natural gas. The grouping function will also be used to facilitate the economic feasibility study in the second phase, particularly for those communities that may have an all-electric option. Furthermore, the Commission may use the CalEnviroScreen tool to pinpoint communities located in the top 25 percent of census tracts most burdened by pollution.

As we have stated, a primary focus of this proceeding is to increase access to affordable energy for low income households without natural gas service. Of

⁵⁶ See Scoping Memo at 6.

⁵⁷ See Joint Minority Parties Comment on Questions in Scoping Memo Attachment 3 at 7.

the 170 communities identified in the Final Report, 18 communities are at less than 5 percent served by natural gas (*see* Figure 1). The approximately 9,056 households without natural gas service in these communities represent one-third of the total households without natural gas in the San Joaquin Valley. At the other end of the spectrum, 37 communities are 100 percent served by natural gas and 103 communities are between 90 to 100 percent served by natural gas. In Phase II, the Commission may consider grouping communities-based on natural gas service levels, as we conduct a more in-depth assessment and development of energy options for eligible communities.

Comm	unities with less th	an 5% gas serv	vice
Community -/Census	Est. Number of	Electricity	County Location
Designated Place (CDP)	Households	Provider	2
Allensworth CDP	125	PG&E and	Tulare
		SCE	
Ducor CDP	148	SCE	
Lindcove CDP	137	SCE	
Seville CDP	113	PG&E and	
		SCE	
West Goshen CDP	151	SCE	
Cressy CDP	120	PG&E	Merced
El Nido CDP	103	PG&E	
Le Grand CDP	479	PG&E	
Stevinson CDP	102	PG&E	
Dos Palos Y CDP	106	PG&E	
Volta CDP	91	PG&E	
La Vina CDP	67	PG&E	Madera
Madera Acres CDP	2469		
Valley Home CDP	80	PG&E	Stanislaus
Johannesburg CDP	121	SCE	Kern
Coalinga City	4219	PG&E	Fresno
Friant CPD	233	PG&E	
Terminous CDP	192	PG&E	San Joaquin
ΤΟΤΑΙ	9056		

Figure	1
--------	---

4. Safety Considerations

When enacting AB 2672, the legislature found that increasing access to affordable energy can improve the health, safety, and air quality of the eligible communities. This Decision implements a portion of the requirements enacted by AB 2672. By doing so, this decision takes steps towards improving the health and safety of California residents.

5. Phase II

The Scoping Memo set forth issues to be resolved in Phase II of this proceeding. This decision provides additional direction on the potential scope of issues to be resolved in Phase II. A PHC to further discuss Phase II will be set following issuance of this decision. Due to potential rate impacts, the Commission anticipates Phase II of the proceeding will be categorized as ratesetting.

In order to solicit additional input and community participation, we intend to hold a series of Energy Option Assessment meetings at some of the identified communities. These meetings are intended to bring together community members, the utilities, and other stakeholders. Input from these meetings will shape the scope of Phase II in this proceeding. In Phase II, the Commission's goal is to evaluate extending natural gas service, craft targeted solutions for communities with less than 5 percent natural gas service, and develop general or specific electric programs or subsidy solutions pursuant to § 783.5. We will also separately issue a ruling for a PHC in order to solicit parties' input on scope of issues and procedural schedule going forward.

The Commission may also choose to consider benefits to the communities identified in this Decision in other proceedings, particularly those listed in Section 3.3 above.

6. Comments on Proposed Decision

The Proposed Decision of Commissioner Guzman Aceves in this matter was mailed to the parties in accordance with Section 311 of the Public Utilities Code and comments were allowed under Rule 14.3 of the Commission's Rules of Practice and Procedure. PG&E, SoCalGas, SCE, TURN and ORA filed comments on April 27, 2017. SoCalGas, TURN, and ORA filed reply comments on May 2, 2017. This decision has been revised based on parties' comments and reply comments where appropriate.

7. Assignment of Proceeding

Martha Guzman Aceves is the assigned Commissioner and S. Pat Tsen is the assigned ALJ in this proceeding.

Findings of Fact

 Pursuant to Section 783.5 of the California Public Utilities Code, R.15-03-010 was instituted to increase affordable access to energy for disadvantaged communities in the San Joaquin Valley.

2. Section 783.5 defined a disadvantaged community as one that is located within the counties of Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, or Tulare; has a population of at least 100; with at least 25 percent of residential households enrolled in CARE; and has geographic boundary no further than seven miles from the nearest natural gas pipeline.

3. The Data Working Group submitted the Final Report on September 26, 2016 which detailed its methodology and identified 170 communities in the San Joaquin Valley.

4. The Final Report uses city and CDP boundaries to identify communities.

5. The Final Report uses the Athens Research Group database to determine population and CARE enrollment.

6. The Final Report relies on information provided by the IOUs to determine location of existing natural gas pipelines.

7. The Final Report methodology relies on data that change over time.

8. The Final Report does not include communities that are wholly served by POU and it does not account for electricity or gas service that a household receives from a POU.

9. The Leadership Counsel recommends adding sixteen additional communities to the Final Report.

10. The IOUs were unable to locate ten of the communities recommended by the Leadership Counsel.

11. There is insufficient data to determine whether the 10 communities identified by the Leadership Counsel, and could not be located by the utilities are disadvantaged communities under the Data Working Group methodology.

12. The 2016 LINA Study and the CalEnviroScreen tool contain information on current energy conditions in the San Joaquin Valley.

13. The CalEnviroScreen tool ranks census tracts in California to identify communities disproportionately burdened by multiple sources of pollution.

14. While communities in this proceeding and the CalEnviroScreen are based on different geographic units, there is significant overlap between communities identified in this proceeding and the top 25 percent of census tracts burdened by pollution as identified by the CalEnviroScreen tool.

15. Households without natural gas service rely on electricity, propane or wood burning for their space heating, water heating and cooking needs.

16. Natural gas, electricity, propane, and wood burning are distinct energy options with different relative emissions, costs, and other factors.

17. Section 783.5 directs the Commission to evaluate the economic feasibility of extending natural gas pipelines, increasing electric subsidies, and other potentially cost effective energy options for the disadvantaged communities in this proceeding.

18. PG&E currently relies on Gas Rules 15 and 16 to determine the cost effectiveness of extending natural gas pipelines in its territory.

19. SoCalGas currently relies on Gas Rules 20 and 21 to determine the cost effectiveness of extending natural gas pipelines in its territory.

20. SB 350 mandates that regulated utilities procure 50 percent of their electricity from renewable sources by 2030 and calls for a 50 percent increase in energy efficiency in new buildings.

21. The ESA Program considers non-energy benefits in the areas of health, comfort, and safety in its assessment of cost-effectiveness.

22. Some communities identified in this proceeding have lower than anticipated participation rates in the CARE and the ESA Programs.

23. The Commission has ordered the IOUs to conduct workshops and devise outreach and marketing plans to improve CARE and ESA enrollment in communities with lower than expected enrollment rates.

24. The IOUs currently disallow enrollment in the All Electric Baseline program by households with propane or wood burning energy sources.

25. Increasing baseline amounts or expanding eligibility for All Electric Baseline to allow enrollment by households with propane and wood burning may reduce residential electricity costs for those households.

26. Some of the traditional low income solar programs administered by the Commission are available only to housing units with deed restrictions to remain "low income."

27. Low income solar programs without deed restrictions would allow more low income households to benefit from solar technology.

28. The GTSR Program reserves 100 MW of renewable generational facilities to be located in disadvantaged communities in California. The Electric Vehicle Grid Integration Pilot program reserved at least ten percent of the charging stations to be installed in disadvantaged communities identified by CalEnviroScreen.

29. SB 1383 (Lara, 2016) directs the Commission to scope out the selection criteria for pilot bio-methane projects.

30. The San Joaquin Valley has clusters of dairy farms.

31. The Barriers Study Final Report as published by the CEC explores barriers to and opportunities to expand low income customers' access to energy efficiency, weatherization and clean energy.

32. Coordination and leveraging of resources between programs and ongoing proceedings may address structural challenges to assisting disadvantaged communities.

33. The CEC has expressed its intent to target outreach and research to economically depressed communities in its administration of the EPIC Program.

34. The CEC has expressed its intent to focus on disadvantaged communities in its administration of the Natural Gas Research, Development, and Demonstration Program.

35. The Commission may consider non-financial factors in making resource planning and investment decisions.

36. Direct costs and benefits of potential energy programs include the implementation costs of the program to utilities, ratepayers, and the affected

households. Quantifiable benefits include lowered energy costs, achieved energy efficiency, measurable reduction in GHGs and other pollutants, etc.

37. Indirect costs and benefits of energy programs include benefits to society and the environment, which include improved air quality, reduced greenhouse gases, and increased diversity in energy sources. The Final Report submitted by the Data Working Group allows users to sort communities based on shared characteristics including number of households, level of service, and distance to natural gas pipelines.

38. The Final Report, in conjunction with the CalEnviroScreen tool, allow the Commission to group and sort eligible communities based on shared characteristics.

39. Natural gas service percentage is the percent of those residences in a disadvantaged community having IOU electric service, who also have natural gas service.

40. Energy Option Assessment meetings held at local communities would allow utilities, community members and other stakeholders to meet and discuss viable affordable energy options.

Conclusions of Law

1. The methodology and definition to identify eligible communities, as proposed by the Data Working Group is in compliance with the statutory requirements of Section 783.5 and should be adopted.

2. The List of 170 communities in the Final Report complies with the statutory requirements of Section 783.5.

3. The Leadership Counsel and the IOUs should work jointly to determine the eligibility of 10 communities for this proceeding that the utilities could not locate. 4. The Commission should consider a mechanism for updating eligible communities in this proceeding due to changes in community characteristics over time.

 Energy conditions of households using natural gas, electricity, propane and wood burning should be evaluated based on (1) The relative emissions of GHG per MMBtu; (2) The relative emissions of criteria pollutants per MMBtu;
 (3) The relative cost of heating per MMBtu; and (4) Any other quantitative or qualitative factors identified that may impact customer health, comfort or safety.

6. The Commission should direct utilities to submit a report on its efforts to conduct marketing and outreach to under-enrolled communities in the San Joaquin Valley pursuant to D.16-11-022.

7. The Commission should consider increasing the baseline amount for the All Electric Baseline.

8. The Commission should consider expanding the eligibility requirements for the All Electric Baseline to include households that use propane and wood burning as energy sources.

9. The Commission should consider expanding marketing and outreach to households eligible for the Medical Baseline tariff.

10. The Commission should consider solar programs that do not carry deed restrictions.

11. The Commission should direct the IOUs to submit reports on their efforts to comply with requirements in commission decisions to target disadvantaged communities as well as other ongoing programs. The IOUs' reports should focus on efforts in the San Joaquin Valley, and include the Net Energy Metering Program for disadvantaged communities, Self-Generation Incentive Program, the

CSI Thermal program, the MAHSRP, the GTSR Program, and the Electric Vehicle Grid Integration Pilot programs.

12. The Commission should monitor ongoing proceedings both at the Commission and other state agencies to identify potential coordination opportunities.

13. In compliance with Section 701.1(a), economic feasibility should consider both cost effectiveness and the costs to society, as well as the goal to improve the environment and to encourage diversity of energy sources.

14. Pursuant to Section 701.1(c), in calculating the cost effectiveness of energy resources, "the commission shall include, in addition to other ratepayer protection objectives, a value for any costs and benefits to the environment, including air quality."

15. The economic feasibility of each energy option should consider direct costs and benefits of the individual program, including the implementation costs of the program to utilities, ratepayers, and the affected households. Quantifiable benefits including lowered energy costs, achieved energy efficiency, measurable reduction in greenhouse gases and other pollutants.

16. The economic feasibility of each energy option should consider indirect costs and benefits to society and the environment, including improved air quality, reduced greenhouse gases, and increased economic activity for the community.

17. The Commission should identify any overlap between the identified communities in this proceeding and the top 25 percent of census tracts as identified by the CalEnviroScreen tool.

18. The Commission should initiate a Phase II to the proceeding to further implement Section 783.5 and increase access to affordable energy in disadvantaged communities in the San Joaquin Valley.

19. The Energy Division should, in conjunction with stakeholder input, host a series of energy option assessment meetings in relevant communities to seek input from stakeholders.

20. For purposes of Section 701.1, Economic Feasibility includes both direct and indirect costs.

ORDER

IT IS ORDERED that:

1. The methodology and definition as submitted by the Data Working Group in its Final Report is adopted to identify eligible communities in this proceeding and shall be subject to any mechanism for updating the determination of eligible communities that is adopted in Phase II of this proceeding.

2. Leadership Counsel, Pacific Gas and Electric Company, Southern California Edison Company, and Southern California Gas Company shall jointly assess the eligibility of Alkali Flats, Earlimart Trico Acres, Five Points, Hardwick Kings, Hypericum (Dog Town), Madonna, Perry Colony, Ripperdan, Rolinda, and The Grove to be included in this proceeding and submit a report on their findings within 30 days of the issuance of this Decision.

3. Pacific Gas and Electric Company, Southern California Edison Company, and Southern California Gas Company shall each serve and file a report of its marketing and outreach efforts to reach disadvantaged communities in the San Joaquin Valley on the same day as the submission of their marketing and outreach plans pursuant to Decision 16-11-022. 4. Pacific Gas and Electric Company, Southern California Edison Company, and Southern California Gas Company shall each serve and file a report detailing their efforts to engage disadvantaged communities in the San Joaquin Valley. The reports shall include information on the Net Energy Metering Program for disadvantaged communities, Self-Generation Incentive Program, the California Solar Initiative Thermal program, the Multifamily Affordable Housing Solar Roofs Program, Green Tariff Shared Renewables Program, and the Electric Vehicle Grid Integration Pilot program within sixty days of the issuance of this decision. The Investor-Owned Utilities may coordinate with each other and the Commission's Energy Division to ensure consistency in scope and format of the reports.

5. Energy Division is directed to coordinate with parties and other stakeholders, and the Commission's Public Advisor's Office, to hold a minimum of three community-based, Energy Option Assessment meetings at selected communities.

6. Rulemaking 15-03-010 remains open.

This order is effective today.

Dated May 11, 2017, at Merced, California.

MICHAEL PICKER President CARLA J. PETERMAN LIANE M. RANDOLPH MARTHA GUZMAN ACEVES CLIFFORD RECHTSCHAFFEN Commissioners

ATTACHMENT A

Assembly Bill 2672

ATTACHMENT A

THE PEOPLE OF THE STATE OF CALIFORNIA DO ENACT AS FOLLOWS:

SECTION 1. The Legislature finds and declares the following:

(a) Many low-income communities throughout California's San Joaquin Valley lack access to natural gas lines.

(b) Increasing access to affordable energy can improve the health, safety, and air quality of these communities.

SEC. 2. Section 783.5 is added to the Public Utilities Code, to read:

783.5. (a) For purposes of this section, the following terms have the following meanings:

(1) "Disadvantaged community" means a San Joaquin Valley community that meets all of the following criteria:

(A) At least 25 percent of residential households with electrical service are enrolled in the CARE program pursuant to Section 739.1.

(B) Has a population greater than 100 persons within its geographic boundaries as identified by the most recent United States Census or a community survey.

(C) Has geographic boundaries no farther than seven miles from the nearest natural gas pipeline operated by a gas corporation.

(2) "San Joaquin Valley" means the counties of Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare.

(b) No later than March 31, 2015, the commission shall initiate a new proceeding to do all of the following:

(1) Identify disadvantaged communities based on the criteria specified in subdivision (a).

(2) Analyze the economic feasibility of the following options:

(A) Extending natural gas pipelines to those disadvantaged communities.

(B) Increasing subsidies for electricity for residential customers in those disadvantaged communities.

(C) Other alternatives that would increase access to affordable energy in those disadvantaged communities that the commission deems appropriate.

(c) The commission shall determine whether any of the options analyzed in the proceeding would increase access to affordable energy in a cost-effective manner. For these options, the commission shall take appropriate action and determine appropriate funding sources.

SEC. 3. The Legislature finds and declares that a special law is necessary and that a general law cannot be made applicable within the meaning of Section 16 of Article IV of the California Constitution because of the unique circumstance that the San Joaquin Valley is home to many communities that lack access to natural gas service and it is necessary to ensure more affordable and cleaner alternatives are available.

(END OF ATTACHMENT A)

ATTACHMENT B

Public Version of the Data Working Group's Final Report

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantaged Communities.

Rulemaking No. 15-03-010 (Filed March 26, 2015)

FINAL REPORT OF THE DATA WORKING GROUP

(PUBLIC VERSION)

DARRYL GRUEN

Attorney for

Office of Ratepayer Advocates California Public Utilities Commission 505 Van Ness Avenue San Francisco, CA 94102 Telephone: (415) 703-1973 Email: <u>djg@cpuc.ca.gov</u>

KIM HASSAN

Attorney for

Southern California Gas Company 555 West Fifth Street, GT14E7 Los Angeles, CA 90013 Telephone: (619) 890-4851 Email: <u>KHassan@SempraUtilities.com</u>

September 28, 2016

CHARLES MIDDLEKAUF

Attorney for

Pacific Gas & Electric Company Law Department P. O. Box 7442, MC-B30A-2475 San Francisco, CA 94120 Telephone: 415-973-6971 Email: <u>crmd@pge.com</u>

ANDREA TOZER

Sr. Attorney for

Southern California Edison Company 2244 Walnut Grove Ave./PO Box 800 Rosemead, CA 91770 Telephone: (626) 302-6713 Email: <u>Andrea.Tozer@sce.com</u>

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

Order Instituting Rulemaking to Identify Disadvantaged Communities in the San Joaquin Valley and Analyze Economically Feasible Options to Increase Access to Affordable Energy in Those Disadvantaged Communities.

Rulemaking No. 15-03-010 (Filed March 26, 2015)

FINAL REPORT OF THE DATA WORKING GROUP (PUBLIC VERSION)

Pursuant to the Administrative Law Judge's Email Ruling issued on September 26, 2016, which allows the Final Data Working Group Report to be filed September 28 ("Ruling"), the Data Working Group¹ provides the following final report summarizing the activities of the Data Working Group and the information requested in the Ruling. This report is an update to the report of the Data Working Group filed August 29, 2016, in advance of the August 31 workshop. As directed in Administrative Law Judge McKinney's ruling on September 8, 2016, on September 12, 2016, the Data Working Group filed a list of representative communities for cost estimates and criteria used to select them. The final public list of communities is attached as attachment A, the confidential version of the final list of communities will be filed under seal.²

ORA updated the illustrative map shown at the August 31 workshop and filed and served it to the service list on September 15, in compliance with the ALJ's rulings. The map is available at the following link:

https://drive.google.com/open?id=1dO8DKLsfk9injmoRKwQrYoAUjJQ

¹ The Data Working Group consists of the Commission's Energy Division staff, Pacific Gas and Electric Company ("PG&E"), Southern California Gas Company ("SoCalGas"), Southern California Edison Company ("SCE"), the Office of Ratepayer Advocates ("ORA"), and other interested parties.

 $[\]frac{2}{2}$ Consistent with Commission rules regarding the confidentiality of customer information, information in the public version is redacted to reflect situations involving less than 100 customers.

Since the August 31, 2016 workshop, the Data Working Group has focused on finalizing a list of ten representative communities for which to develop cost estimates to extend gas service, and on confirming and updating the pipeline distance data in the master spreadsheet. ORA sent a joint data request to Pacific Gas and Electric Company ("PG&E") and Southern California Gas Company ("SoCalGas") on August 31, with a due date of September 15. ORA received responses from PG&E on September 15 and from SoCalGas on September 23.

With this new data, a new tab was added to the spread sheet "Distances" that includes the distances from the city center point and the approximate city boundary to the nearest gas transmission line and the nearest gas distribution line (Columns C-F for PG&E and Columns G-J for SoCalGas).³ Column "D" on the tab "SJV Master" was updated based on the minimum distance to either transmision or distribution line as well. None of this new data has been marked confidential. Even with the addition of this new data, the data set assumptions identified in the workshop on August 31st are the same.

The Data Working Group jointly selected ten communities for which to develop high-level cost estimates for gas facility extension projects. PG&E and SoCalGas are preparing these estimates, which are due to the proceeding's service list on October 12, 2016.

Having completed the work initially assigned to the group when it was formed, this report is the final report of the Data Working Group.

³ SoCalGas must consider more than just the distance between a community and a transmission line when developing service extension cost estimates. In order to provide service from a Transmission line, SoCalGas' policy requires Transmission tap application criteria to be met (i.e. load, pipe diameter size). As a result, although distances may show Transmission as the closest source of supply, if Transmission service requirements are not met, service will need to be supplied from the closest Distribution facilities.

Respectfully submitted,

/s/ DARRYL GRUEN

DARRYL GRUEN

Attorney for Office of Ratepayer Advocates California Public Utilities Commission 505 Van Ness Avenue San Francisco, CA 94102 Telephone: (415) 703-1973 Email: <u>djg@cpuc.ca.gov</u>

/s/ KIM HASSAN

KIM HASSAN

Attorney for Southern California Gas Company 555 West Fifth Street, GT14E7 Los Angeles, CA 90013 Telephone: (619) 890-4851 Email: <u>KHassan@SempraUtilities.com</u> /s/ CHARLES MIDDLEKAUF

CHARLES MIDDLEKAUF

Attorney for Pacific Gas & Electric Company Law Department P. O. Box 7442, MC-B30A-2475 San Francisco, CA 94120 Telephone: 415-973-6971 Email: <u>crmd@pge.com</u>

/s/ ANDREW TOZER

ANDREA TOZER

Sr. Attorney for Southern California Edison Company 2244 Walnut Grove Ave./PO Box 800 Rosemead, CA 91770 Telephone: (626) 302-6713 Email: <u>Andrea.Tozer@sce.com</u>

ATTACHMENT A

70%-80%	Zero%	20%-70%	80%-90%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	80%-90%	0.1%-50%	90%-92%	80%-90%	70%-80%	70%-80%	20%-70%	95%-100%	0.1%-50%	80%-90%	60%-92%	70%-80%	95%-100%	100% & over	0.1%-50%	50%-70%	100% & over	Zero%	100% & over	95%-100%	95%-100%	100% & over	100% & over	95%-100%	60%-95%	0.1%-50%	Zero%	100% & over	60%-95%	80%-90%	20%-70%	80%-90%	95%-100%	Zero%	100% & over	100% & over	90%-95%
×	0.0%	61.8%	83.2%	98.1%	97.5%	98.7%	98.0%	×	×	×	93.3%	85.4%	×	73.7%	64.4%	95.9%	×	87.5%	×	70.4%	97.8%	100.2%	×	67.9%	102.9%	%0.0	×	×	98.1%	126.0%	×	97.5%	94.4%	Х	0.0%	100.8%	90.6%	81.8%	51.6%	88.0%	X	0.0%	×	105.9%	92.4%
×	0.0%	67.3%	94.1%	92.8%	97.5%	96.5%	96.0%	96.3%	×	59.0%	66.7%	78.1%	×	94.1%	64.0%	81.7%	×	84.3%	×	79.0%	94.9%	100.1%	×	72.9%	105.6%	%0.0%	95.7%	×	99.7%	111.0%	100.1%	98.2%	102.0%	Х	0.0%	103.0%	78.5%	86.5%	41.7%	85.9%	Х	0.0%	×	100.4%	97.9%
105.1%	×	109.0%	113.1%	94.6%	87.8%	97.8%	97.9%	×	×	×	71.5%	91.5%	×	127.7%	99.4%	85.2%	104.1%	96.4%	×	112.2%	97.0%	6.99%	80.0%	107.5%	102.6%	99.2%	×	91.3%	101.7%	88.1%	×	100.7%	108.1%	X	139.2%	102.1%	86.6%	105.7%	80.9%	97.7%	X	118.4%	×	94.8%	105.9%
PGE	None	SCG	scg	SCG	PGE	PGE	PGE	PGE&SCG	PGE	PGE	PGE	PGE	SCG	SCG	SCG	PGE	PGE	scg	SCG	PGE	PGE	PGE	PGE	PGE	PGE	None	scg	PGE&SCG	scg	scg	PGE	SCG	PGE	PGE	None	SCG	SCG	SCG	SCG	PGE	SCG	None	scg	PGE	SCG
×	0	165	1,119	4,192	9,248	2,385	2,254	116,228	×	1,362	236	868	×	370	3,180	420	×	558	×	617	3,961	36,808	×	496	3,787	0	1,080	×	10,536	131	1,497	6,226	1,608	X	0	242	1,576	1,460	116	556	X	0	×	2,552	3,491
4 PGE	PGE&SCE	7 PGE	5 SCE	5 PGE	5 PGE	7 PGE	D PGE	PGE&SCE	PGE	<pre>PGE&SCE</pre>	3 PGE	2 SCE	PGE	2 PGE	7 SCE	8 PGE	5 PGE	8 PGE	PGE	S SCE	1 PGE	7 PGE	8 PGE	1 PGE	D PGE	9 PGE	PGE&SCE	9 PGE	4 SCE	4 PGE	PGE	5 PGE	4 PGE	PGE	SCE	D PGE	9 SCE	4 SCE	5 SCE	2 PGE	PGE	2 PGE	(SCE	9 PGE	9 SCE
10		267	1,345	4,275	9,485	2,417	2,30(Î			253	1,052		205	4,937	436	12(636		876	4,05′	36,727	4,178	.62	3,68(119		356	10,74	102		6,385	1,70		20(24(1,739	1,782	225	632		122		2,409	3,779
					Irrigation district - Merced				Irrigation district - Merced																						Irrigation district - Turlock														
104	X	267	1,345	4,275	8,332	2,417	2,300	X	×	×	253	1,052	×	502	4,937	438	126	638	X	876	4,051	36,727	4,178	731	3,680	119	×	359	10,744	104	×	6,385	1,704	Х	206	240	1,739	1,784	225	632	X	122	×	2,409	3,779
No	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes
0	0	165	1,119	4,192	0	0	0	35,668	0	0	0	0	×	370	3,180	0	0	558	×	0	0	0	0	0	0	0	1,080	344	10,536	131	0	6,226	0	0	0	242	1,576	1,460	116	0	X	0	×	0	3,491
0	×	0	1,345	0	0	0	0	×	0	2,797	0	1,052	0	0	4,937	0	0	0	0	876	0	0	0	0	0	0	×	0	10,744	0	0	0	0	0	206	0	1,739	1,784	225	0	0	0	×	0	3,779
Yes	N	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No	Yes	No	Yes	Yes	No	No	No	No	No	Yes	No	Yes	No	Yes	8
×	0	0	0	0	9,248	2,385	2,254	80,560	×	1,362	236	898	0	0	0	420	×	0	0	617	3,961	36,808	×	496	3,787	0	0	×	0	0	1,497	0	1,608	X	0	0	0	0	0	556	0	0	0	2,552	0
104	108	267	0	4,275	8,332	2,417	2,300	116,470	×	×	253	0	×	502	0	438	126	638	×	0	4,051	36,727	4,178	731	3,680	119	1,068	359	0	104	×	6,385	1,704	X	0	240	0	0	0	632	×	122	0	2,409	0
00.0	.01	0.02	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	.06	.00	.00	.00	2.45	00.0	00.0	00.0	00.0	00.0	.00	00.0	.00	.34	.00	00.0	00.0).23	00.0	00.0	00.0	2.16	3.17	00.0	00.0	00.0	1.50	00.0	1.00	2.70).84	00.0	00.0

×	Yes	0	0	Yes			X PGE		X PGE			×	80%-90%
				No P	0 10R		3 128 PGF	·		08 5%	07 8%	< 70/ 70/	00 /0-30 /0 00%-05%
1 263 Yes				Yes	1 201		1 201 PGF	Ĩ				× ×	95%-100%
102 Yes		0	0	No	105		105 PGE		102 PGE	107.1%	104.1%	97.1%	95%-100%
1,661 Yes		0	140	Yes	1,882		1,882 PGE	-	801 PGE&SC	G 101.9%	97.5%	95.7%	95%-100%
1,777 Yes		0	0	No	1,500	Irrigation district - Merced	1,866 PGE	~	777 PGE	80.4%	95.2%	95.2%	95%-100%
0 No		925	1,171	Yes	925		925 SCE	-	171 SCG	%1.77	6 98.4%	126.6%	100% & over
473 Yes		0	0	No	729		729 PGE		473 PGE	132.3%	85.8%	64.9%	50%-70%
165,731 Yes		0	0	No	163,180		163,180 PGE	165	731 PGE	95.6%	97.1%	101.6%	100% & over
X Yes		0	0	No	201		201 PGE		X PGE	86.3%	X	×	0.1%-50%
× No		0	195	Yes	227		227 PGE		X PGE&SC	G 77.2%	×	×	80%-90%
2,796 Yes		0	0	No	2,845		2,845 PGE	2	796 PGE	6.9%	95.2%	98.3%	95%-100%
0 No		553	695	Yes	553		553 SCE		695 SCG	67.8%	85.2%	125.7%	100% & over
227 Yes		0	0	No	234		234 PGE		227 PGE	85.7%	83.2%	97.0%	95%-100%
0 No		0	2,013	Yes	1,980		1,980 PGE	5	013 SCG	%2.66	101.4%	101.7%	100% & over
1,181 Yes		0	0	Yes	1,205		1,205 PGE	~	181 PGE	86.9%	85.2%	98.0%	95%-100%
2,044 Yes		0	0	No	2,182		2,182 PGE	2	044 PGE	109.0%	102.1%	93.7%	90%-95%
0 No 18,	18,	097	17,488	Yes	×		X PGE8	SCE 17	488 SCG	^	6 95.6%	×	95%-100%
0 No		453	424	Yes	453		453 SCE		424 SCG	98.5%	92.2%	93.6%	90%-95%
1,354 Yes		0	0	No	1,435		1,435 PGE	~	354 PGE	%0.06	84.9%	94.4%	90%-95%
264 Yes		533	0	No	533		533 SCE		264 PGE	103.5%	51.3%	49.5%	0.1%-50%
0 No	•	,314	1,208	Yes	1,314		1,314 SCE	1	208 SCG	110.0%	6 101.1%	91.9%	90%-95%
0 Yes		130	0	No	130		130 SCE		0 None	107.4%	0.0%	0.0%	Zero%
774 Yes		0	0	No	786		786 PGE		774 PGE	98.5%	97.0%	98.5%	95%-100%
4,159 Yes		0	0	No	4,060		4,060 PGE	4,	159 PGE	102.0%	104.5%	102.4%	100% & over
317 Yes		0	0	Yes	361		361 PGE		317 PGE	98.4%	86.4%	87.8%	80%-90%
0 No		0	4,146	Yes	4,173		4,173 PGE	4	146 SCG	104.9%	104.2%	99.4%	95%-100%
0 Yes		0	0	No	142		142 PGE		0 None	211.9%	°0.0%	0.0%	Zero%
0 No		436	446	Yes	436		436 SCE		446 SCG	102.3%	6 104.7%	102.3%	100% & over
0 No		0	3,259	Yes	3,297		3,297 PGE	3	259 SCG	94.6%	93.5%	98.8%	95%-100%
0 Yes		0	141	Yes	167		167 PGE		141 SCG	117.6%	99.3%	84.4%	80%-90%
5,711 Yes		0	0	No	5,678	Irrigation district - Lathrop	5,678 PGE	5	711 PGE	102.7%	6 103.3%	100.6%	100% & over
0 Yes		0	0	No	512	Irrigation district - Merced	512 PGE		0 None	106.9%	%0·0	0.0%	Zero%
0 No		289	448	Yes	714		714 PGE8	\$ SCE	448 SCG	128.0%	80.3%	62.7%	50%-70%
1,540 Yes		0	0	No	1,535		1,535 PGE	£	540 PGE	95.3%	95.7%	100.3%	100% & over
0	c	117	0 100	No	117		117 SCE		0 None	85.4%	0.0%	0.0%	Zero%
0 N0	v	404	3, 162	Yes	3,404		3,404 SCE	Ň	162 506	%0.c0l	9/.5%	92.9%	%GR-%0R
3.417 Ves		201 0	216 0	Yes	201	Irritation district - Merced	201 SCE 3 260 PGF	۰ ۲	216 SCG 417 PGF	102.6% 76.8%	6 110.2% 104.8%	107.5%	100% & over 100% & over
1.105 Yes			C	No	1,184		1.184 PGF		105 PGE	%2.66	93.1%	93.3%	90%-95%
22,595 Yes		0	0	No	258	Ludi Electric Utility	23,132 PGE	22	595 PGE	1.1%	97.7%	97.7%	95%-100%
0		0	524	Yes	381		381 PGE		524 SCG	96.2%	6 132.3%	137.5%	100% & over
11,535 Yes		0	0	No	11,715		11,715 PGE	11,	535 PGE	107.4%	105.7%	98.5%	95%-100%
0 No		0	392	Yes	462		462 PGE		392 SCG	97.7%	82.9%	84.8%	80%-90%
X Yes		0	0	No	2,426		2,426 PGE		X PGE	98.3%	×	×	0.1%-50%
16,520 Yes		0	00	9N :	16,830		16,830 PGE	16	520 PGE	100.6%	98.7%	98.2%	95%-100%
220 Yes			0	9 2	220		220 PGE		220 PGE	83.7%	83.7%	100.0%	100% & over
24,252 Yes		0	0	No	23,775		23,775 PGE	24	252 PGE	98.9%	100.9%	102.0%	100% & over

																																			'																	
000/_0E0/	90%-95%	95%-100%	70%-80%	70%-80%	100% & over	100% & over	95%-100%	100% & over	100% & over	100% & over	90%-92%	95%-100%	95%-100%	95%-100%	80%-90%	100% & over	90%-95%	0.1%-50%	90%-92%	0.1%-50%	80%-90%	100% & over	80%-90%	90%-92%	95%-100%	95%-100%	95%-100%	Zero%	90%-92%	70%-80%	80%-90%	95%-100%	80%-90%	Zero%	100% & over	80%-90%	70%-80%	100% & over	95%-100%	95%-100%	95%-100%	100% & over	90%-92%	0.1%-50%	80%-90%	100% & over	50%-70%	50%-70%	100% & over	90%-92%	80%-90%	100% 8. 000r
7%	92.3%	96.9%	×	76.0%	×	×	96.1%	100.6%	×	103.4%	80.0%	99.3%	%0.66	97.9%	X	116.8%	90.7%	43.6%	94.5%	×	82.0%	104.3%	83.0%	94.4%	99.3%	98.2%	98.4%	%0.0	×	72.0%	80.3%	97.2%	84.3%	0.0%	101.2%	83.6%	70.5%	103.4%	×	98.0%	97.6%	100.2%	92.8%	X	82.6%	117.3%	62.7%	×	101.0%	×	×	100 60/
07 U ⁰⁷	95.0%	96.9%	X	77.7%	X	300.0%	96.1%	100.6%	94.3%	101.2%	77.2%	89.6%	87.9%	101.8%	76.6%	146.3%	102.9%	47.3%	99.2%	X	85.9%	104.3%	90.8%	93.1%	102.4%	104.3%	99.3%	0.0%	×	69.2%	91.2%	83.0%	86.3%	0.0%	101.2%	81.5%	69.0%	95.4%	X	92.7%	91.0%	99.1%	107.2%	Х	84.5%	133.6%	63.5%	X	92.4%	×	X	100 /0/
100 00/	103.0%	85.0%	×	102.2%	×	×	100.0%	89.1%	×	97.9%	85.8%	90.2%	88.8%	103.9%	X	125.2%	113.5%	108.6%	105.0%	×	104.8%	71.3%	109.4%	98.6%	103.2%	106.2%	100.9%	×	111.6%	96.2%	113.5%	85.3%	102.3%	105.9%	96.3%	97.4%	97.8%	92.2%	96.6%	94.6%	93.2%	98.9%	115.5%	116.1%	102.4%	113.9%	101.3%	×	91.4%	×	×	101 20/
500	PGE	PGE	SCG	SCG	SCG	scg	PGE	PGE	PGE&SCG	SCG	PGE	PGE	scg	SCG	SCG	scg	PGE	SCG	SCG	scg	scg	PGE	SCG	PGE	PGE	PGE	PGE&SCG	None	PGE&SCG	SCG	PGE	PGE	SCG	None	PGE	SCG	SCG	PGE	PGE&SCG	PGE	PGE	PGE	SCG	PGE	SCG	scg	PGE	PGE	SCG	SCG	SCG	
3 010	2,438	25,588	X	1,377	X	156	3,174	7,659	12,349	2,083	542	541	3,071	519	656	319	1,197	285	16,320	X	518	7,083	6,120	863	7.119	555	6,708	0	×	108	424	565	409	0	97,892	606	160	1,521	X	670	362	1,295	3,639	X	683	441	202	X	594	×	×	75 710
	PGE	5 PGE	PGE	I SCE	PGE	PGE	3 PGE	7 PGE	PGE&SCE	5 PGE	2 PGE	5 PGE	I PGE) SCE	PGE&SCE	3 SCE) PGE	t SCE	t SCE	PGE	2 SCE	9 PGE	I SCE	t PGE	2 PGE	5 PGE	S PGE	PGE&SCE) PGE) PGE	3 PGE	I PGE	5 SCE	3 PGE	PGE	5 SCE	PGE	I PGE	5 PGE	1 PGE	I PGE	2 PGE) SCE	3 PGE	7 SCE	SCE	2 PGE	PGE	3 SCE	SCE	SCE	
3 106	2,641	26,415	×	1,811	~		3,303	7,617	~	2,015	209	546	3,101	530	×	273	1,320	654	17,274	×	632	6,785	7,371	614	7.172	565	6,816	~	4,935	150	528	581	485	108	96,740	725	227	1,471	2,336	684	371	1,292	3,920	223	827	376	322	~	586	~	~	75 567
		Irrigation district - Merced						Irrigation district - Modesto									Irrigation district - Merced					Irrigation district - Modesto	>												Port of Stockton (small)																	
3 106	2,641	22,443	×	1,811	×	X	3,303	6,786	×	2,015	602	545	3,101	530	X	273	1,320	654	17,274	×	632	4,838	7,371	914	7.172	565	6,816	×	4,939	150	528	581	485	108	93,171	725	227	1,471	2,336	684	371	1,292	3,920	223	827	376	322	×	588	×	×	75 567
Vac	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes	No	No	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes	No
3 010	0	0	×	1,377	×	156	0	0	6,562	2,083	0	0	3,071	519	656	319	0	285	16,320	×	518	0	6,120	0	0	0	1,095	0	4,614	108	0	0	409	0	0	606	160	0	×	0	0	0	3,639	0	683	441	0	0	594	×	×	C
200	0	0	0	1,811	0	0	0	0	×	0	0	0	0	530	756	273	0	654	17,274	0	632	0	7,371	0	0	0	0	×	0	0	0	0	485	0	0	725	0	0	0	0	0	0	3,920	0	827	376	0	0	588	×	×	C
Voc	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	No	Yes	Yes	No	No	No	No	Yes	No	No	Yes	No	Yes	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No	8	Yes	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes	No	9V	No	\
c	2,438	25,588	0	0	0	0	3,174	7,659	5,787	0	542	541	0	0	0	0	1,197	0	0	0	0	7.083	0	863	7.119	555	5,613	0	×	0	424	565	0	0	97,892	0	0	1,521	2,201	670	362	1,295	0	X	0	0	202	×	0	0	0	0E 710
2 260	2,641	22,443	X	0	×	×	3,303	6,786	12,190	2,015	602	545	3,101	0	X	0	1,320	0	0	×	0	4,838	0	914	7.172	565	6,816	X	4,939	150	528	581	0	108	93,171	0	227	1,471	2,336	684	371	1,292	0	223	0	0	322	×	0	0	0	75 567
	00.0	00.0).37	00.0	00.0	1.94	00.0	00.0	00.0	00.00	00.0	00.0	.00	.25	.00	.13	00.0	00.00	00.0).85	00.0	00.0	00.0	00.0	00.0	00.0	00.0	1.21	00.0).25	00.0	00.0	00.0	3.58	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	1.82	00.0	00.0	00.0	00.0	00.0	1.10	00.0	

100%	over	-70%	-95%	ero%	100%	ero%	100%	100%	ero%	-70%	-80%	100%	100%	-50%	OVEL
6 95%-:	100% &	× 50%	%06 %	6 Z	6 95%-0	6 Z	65%-0 35%-0 35%	6 95%-:	%	6 50%	%02 %	6 95%-0	× 62%-:	0.1%	100% &
96.3%	~		92.7%	%0.0	98.2%	%0.0		98.5%	%0.0	59.3%	74.4%	96.8%			×
98.3%	X	×	90.2%	0.0%	9.6%	0.0%	101.0%	82.0%	0.0%	51.3%	89.3%	96.8%	100.8%	×	X
102.1%	X	×	97.3%	×	101.4%	×	×	83.2%	88.7%	86.4%	120.1%	88.0%	×	58.4%	X
SCG	SCG	PGE	SCG	None	SCG	None	SCG	SCG	None	PGE	PGE	PGE	SCG	scg	CCC CCCC
18,579	×	×	166	0	44,260	0	5,464	527	0	162	151	2,822	2,052	×	×
84 SCE	X PGE	X PGE	79 PGE	X PGE	79 SCE	X PGE	X PGE&SCE	35 PGE	34 SCE	73 PGE	103 PGE	14 PGE	X PGE&SCE	143 SCE	X PGF&SCF
19,2			-		45,0			2	-	2	2	1 2,9		6	
												Irrigation district - Merced			
19,284	×	×	179	×	45,079	×	×	535	134	273	203	2,563	×	243	X
Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes
18,579	×	0	166	0	44,260	0	5,464	527	0	0	0	0	2,052	×	×
19,284	0	0	0	0	45,079	0	×	0	134	0	0	0	2,150	243	×
No	No	Yes	Yes	Yes	No	Yes	No	Yes	9	Yes	Yes	Yes	No	Q	No
0	0	×	0	0	0	0	0	0	0	162	151	2,822	0	0	C
0	×	×	179	×	0	×	5,621	535	0	273	203	2,563	×	0	×
00.0	.77	00.0	00.0	2.92	00.0	00.0	00.0	.96	.29	00.0	00.0	00.0	00.0	00.0	80 0

0.84	0	0	No	×	×	Yes	×		×	SCE	×	sce	×	×	×	100% & over	
0.00	×	0	Yes	0	×	Yes	×		×	PGE	×	SCG	×	×	×	100% & over	
1.77	×	0	No	0	×	Yes	×		×	DGE	×	SCG	×	X	×	100% & over	
0.08	×	0	No	×	×	Yes	×		× :	DGE&SCE	×	scg	×	X	×	100% & over	
1.00	×	0	oN ;	0 0	×	Yes	× ?		× ;	0GE	××	SCG	××	×	×	95%-100%	
1 10	×		Yes		××	Yes			× >	ULL ULL ULL ULL ULL ULL ULL ULL ULL ULL	<	200	< >	××	< >	90%-95% 00%_05%	
0.00	> >		Vec	< <	< <			Irrivation district - Marcad	< >		< >		< >	< >	< >	%UG-%UE	
0.00			Yes			Yes				GE C		PGE	< ×	××	<	%06-%08	
0.00	0	0	2			Yes	×		×	SCE .		SCG	× ×	×	×	80%-90%	
0.06	×	0	Yes	0	×	Yes	×		×	UCE DCE	×	scg	×	×	×	70%-80%	
0.37	×	0	Yes	0	×	Yes	×		×	ЭGE	×	SCG	×	×	×	70%-80%	
0.00	×	×	Yes	0	0	No	×		×	DGE	×	PGE	×	×	×	50%-70%	
0.00	×	×	Yes	0	0	No	×		×	DGE	×	PGE	×	×	×	50%-70%	
0.85	×	0	Yes	0	×	Yes	×		×	DGE	×	SCG	×	×	×	0.1%-50%	
2.92	×	0	Yes	0	0	No	×		×	DGE	0	None	×	0.0%	0.0%	Zero%	
0.00	×	0	Yes	0	0	No	×		×	PGE	0	None	×	0.0%	0.0%	Zero%	
0.23	104	0	No	0	131	Yes	104		104 F	DGE	131	scg	88.1%	111.0%	126.0%	100% & over	
0.00	240	0	No	0	242	Yes	240		240 F	DGE	242	SCG	102.1%	103.0%	100.8%	100% & over	
0.00	0	0	No	553	695	Yes	553		553	SCE	695	SCG	67.8%	85.2%	125.7%	100% & over	
0.00	0	0	No	436	446	Yes	436		436 5	SCE	446	SCG	102.3%	104.7%	102.3%	100% & over	
0.50	0	0	No	201	216	Yes	201		201 8	SCE	216	SCG	102.6%	110.2%	107.5%	100% & over	
1.87	381	0	No	0	524	Yes	381		381 F	DGE	524	SCG	96.2%	132.3%	137.5%	100% & over	
0.00	220	220	Yes	0	0	No	220		220 F	DGE	220	PGE	83.7%	83.7%	100.0%	100% & over	
0.00	0	0	No	330	377	Yes	330		330 5	SCE	377	scg	98.8%	112.9%	114.2%	100% & over	
1.94	×	0	No	0	156	Yes	×		×	9GE	156	SCG	×	300.0%	×	100% & over	
0.13	0	0	No	273	319	Yes	273		273 5	SCE	319	scg	125.2%	146.3%	116.8%	100% & over	
0.00	0	0	No	376	441	Yes	376		376 5	SCE	441	SCG	113.9%	133.6%	117.3%	100% & over	
0.00	0	0	No	588	594	Yes	588		588 0	SCE	594	SCG	91.4%	92.4%	101.0%	100% & over	
0.00	438	420	Yes	0	0	No	438		438 F	PGE	420	PGE	85.2%	81.7%	95.9%	95%-100%	
0.00	359	×	No	0	344	Yes	359		359 F	DGE	×	PGE&SCG	91.3%	×	×	95%-100%	
0.00	105	102	Yes	0	0	No	105		105 F	DGE	102	PGE	107.1%	104.1%	97.1%	95%-100%	
0.00	234	227	Yes	0	0	No	234		234 F	DGE	227	PGE	85.7%	83.2%	97.0%	95%-100%	
0.00	786	774	Yes	0	0	No	786		786 F	DGE	774	PGE	98.5%	97.0%	98.5%	95%-100%	
0.00	545	541	Yes	0	0	No	545		545 F	PGE	541	PGE	90.2%	89.6%	99.3%	95%-100%	
0.25	0	0	No	530	519	Yes	530		530 5	SCE	519	SCG	103.9%	101.8%	97.9%	95%-100%	
0.00	565	555	Yes	0	0	No	595		565 F	DGE	555	PGE	106.2%	104.3%	98.2%	95%-100%	
0.00	581	565	Yes	0	0	Yes	581		581 F	JDc	565	PGE	85.3%	83.0%	97.2%	95%-100%	
0.00	684	670	Yes	0	0	Yes	684		684 F	DGE	670	PGE	94.6%	92.7%	98.0%	95%-100%	
0.00	371	362	Yes	0	0	No	371		371 F	PGE	362	PGE	93.2%	91.0%	97.6%	95%-100%	
0.96	535	0	Yes	0	527	Yes	535		535 F	DGE	527	scg	83.2%	82.0%	98.5%	95%-100%	
0.00	253	236	Yes	0	0	No	253		253 F	PGE	236	PGE	71.5%	66.7%	93.3%	90%-95%	
0.47	0	0	No	453	424	Yes	453		453 5	SCE	424	scg	98.5%	92.2%	93.6%	90%-95%	
0.00	602	542	Yes	0	0	No	602		602 F	DGE	542	PGE	85.8%	77.2%	90.0%	90%-95%	
0.00	914	863	Yes	0	0	No	914		914 F	DGE	863	PGE	98.6%	93.1%	94.4%	90%-95%	
0.00	179	0	Yes	0	166	Yes	179		179 F	PGE	166	SCG	97.3%	90.2%	92.7%	90%-95%	
0.00	638	0	No	0	558	Yes	638		638 F	DGE	558	SCG	96.4%	84.3%	87.5%	80%-90%	
0.00	632	556	Yes	0	0	Yes	632		632 F	DGE	556	PGE	97.7%	85.9%	88.0%	80%-90%	
0.01	227	×	No	0	195	Yes	227		227 F	DGE	×	PGE&SCG	77.2%	×	×	80%-90%	
0.00	361	317	Yes	0	0	Yes	361		361 F	DGE	317	PGE	98.4%	86.4%	87.8%	80%-90%	
0.00	167	0	Yes	0	141	Yes	167		167 F	DGE	141	SCG	117.6%	99.3%	84.4%	80%-90%	
0.06	462	0	No	0	392	Yes	462		462 F	DGE	392	SCG	97.7%	82.9%	84.8%	80%-90%	
0.00	437	368	Yes	0	×	Yes	437		437 F	PGE	×	PGE&SCG	96.9% 	X	×	80%-90%	
0.00	×		0N :	756	656	Yes	X		×	DE&SCE	650	SCG	X	76.6%	X	80%-90%	
0.00	0	0	No	632	518	Yes	632		632 5	SCE	518	SCG	104.8%	85.9%	82.0%	80%-90%	

0 0 No 104 X Yes	0 No Yes	No Yes		827 0	683 0	Yes No	10		827 104	SCE	683 X	SCG	102.4% 105.1%	84.5% X	82.6% X	80%-90% 70%-80%	
502 0 No 0 370	0 No 0 370	No 0 370	0 370	370	-	Yes	205		502	PGE	370	SCG	127.7%	94.1%	73.7%	70%-80%	
0 617 Yes 876 0	617 Yes 876 0	Yes 876 0	876 0 100	100		No	871		876	SCE	617	PGE	112.2%	79.0%	70.4%	70%-80%	
72 0 163 0 160 160 160	0 V 163	N0 160	160	160		Xes Yes	29:		766	PGF PGF	160	200	97.8%	%0.69	70.5%	70%-80%	
127 X Yes 0 0	X Yes 0 0	Yes 0 0	0	0		No	12;		127	PGE	X	PGE	50.8%	×	×	70%-80%	
203 151 Yes 0 0	151 Yes 0 0	Yes 0 0	0	0		No	20;		203	PGE	151	PGE	120.1%	89.3%	74.4%	70%-80%	
267 0 No 0 165	0 No 165	No 0 165	0 165	165		Yes	26		267	PGE	165	scg	109.0%	67.3%	61.8%	20%-70%	
731 496 Yes 0 0	496 Yes 0 0	Yes 0 0	0 0 115	0		No	73		731	PGE	496	PGE	107.5%	72.9%	67.9%	50%-70%	
0 0 0 10 0 225 0 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U No 225 0116 473 Yes 0 0	Ves 0 0 0	0 0 911. 677	0		Yes	72(62Z	SCE	116 473	PGE	80.9%	41./% 85.8%	51.6% 64.9%	50%-70%	
425 0 No 289 448	0 No 289 448	No 289 448	289 448	448		Yes	11		714	PGE&SCE	448	SCG	128.0%	80.3%	62.7%	20%-70%	
322 202 Yes 0 0	202 Yes 0 0	Yes 0 0	0	0		No	32;		322	PGE	202	PGE	101.3%	63.5%	62.7%	20%-70%	
260 0 No X 165	0 No X 165	No X 165	X 165 V	165		/es			X	PGE&SCE	165	SCG	×	91.2%	×	50%-70%	
273 162 Yes 0 0 1	162 Yes 0 0 0	Yes 0 0 0	0	0	2	9	27,		273	PGE	162	PGE	86.4%	51.3%	59.3%	50%-70%	
126 X Yes 0 0 N	X Yes 0 0 0	Yes 0 0 0	0	0	~	9	12,		126	PGE	×	PGE	104.1%	×	×	0.1%-50%	
X Yes 0 0 0	X Xes 0 0 0					0			×	PGE	X	PGE	X	X	×	0.1%-50%	
301 136 Yes 0 0 0 N					ž ž		31. 20		310	PGE PGE	1.30 X	PGE PGE	80.5% %6.3%	35.3% ¥	43.9%	0.1%-50% 0 1%-50%	
0 264 Yes 533 00 N	264 Yes 533 0 N	Yes 533 0 N	533 0 N	0			23(533	SCE	264	PGE	103.5%	51.3%	49.5%	0.1%-50%	
0 0 No 654 285 Ye	0 No 654 285 Ye	No 654 285 Ye	654 285 Ye	285 Ye	Υe	s	654		654	SCE	285	SCG	108.6%	47.3%	43.6%	0.1%-50%	
223 X Yes 0 0 N	X Yes 0 0 N	Yes 0 0 N	0	0	Ž		22:		223	PGE	X	PGE	116.1%	×	×	0.1%-50%	
0 0 No 243 X Ye	0 No 243 X Ye	No 243 X Ye	243 X Ye	X Ye	Ye	s	24;		243	SCE	X	scg	58.4%	×	×	0.1%-50%	
108 0 No X 0 Ye	0 No X 0 Ye	No X 0 Υe	X 0 Ye	0 Ye	Υe	s			X	PGE&SCE	0	None	×	0.0%	0.0%	Zero%	
119 0 Yes 0 0 Nc	0 Yes 0 0 Nc	Yes 0 0 No	0 0	0	Ň		11:		119	PGE	0	None	99.2%	0.0%	0.0%	Zero%	
0 0 No 206 0 N	0 No 206 0 N	206 0 No	206 0 N		Ž		20		206	SCE	0	None	139.2%	0.0%	0.0%	Zero%	
					Ž		721		721	PGE PCT	0	None	118.4%	0.U%	%0.0 %0.0	Zero%	
					ž z		142		142	DGF DGF	0	None	011 0% 211 0%	%0.0 %0.0	%0.0 %0.0	Zero%	
		Xes 0 0					512	 Irrigation district - Merced 	512	PGF		None	106.9%	0.0%	0.0%	Zero%	
0 0 No 117 0 N	0 No 117 0 N	No 117 0 N	117 0 N				11:		117	SCE	0	None	85.4%	0.0%	0.0%	Zero%	
X 0 No X	0 No V	No X	X 0	0	¥	SS			×	PGE&SCE	0	None	×	0.0%	%0.0	Zero%	
108 0 Yes 0 0 0	0 Yes 0 0 0	Yes 0 0 N	0	0	2	9	10		108	PGE	0	None	105.9%	%0.0	0.0%	Zero%	
0 0 No 134 0 Ye	0 No 134 0 Ye	No 134 0 Ye	134 0 Ye	0	¥	ŝ	<u>1</u> 3		134	SCE	0	None	88.7%	0.0%	0.0%	Zero%	
680 3,787 Yes 0 0 0	3,787 Yes 0 0 0 1	Yes 0 0 0	0	0		No	3,68		3,680	PGE	3,787	PGE	102.6%	105.6%	102.9%	100% & over	
X 1.497 Yes 0 0 0	1.497 Yes 0 0 0	Yes 0 0	0	0001		No		Irrigation district - Turlock	< ×	PGE	1,000	PGE	< ×	100.1%	< ×	100% & over	_
409 2,552 Yes 0 0	2,552 Yes 0 0	Yes 0 0	0	0		No	2,40	,	2,409	PGE	2,552	PGE	94.8%	100.4%	105.9%	100% & over	_
0 0 No 925 1,171 Y	0 No 925 1,171 Y	No 925 1,171 Y	925 1,171 Y	1,171 \		'es	92;		925	SCE	1,171	scg	77.7%	98.4%	126.6%	100% & over	
980 0 No 0 2,013 Y	0 No 0 2,013 V	No 0 2,013)	0 2,013 \	2,013		es/	1,98(1,980	PGE	2,013	scg	99.7%	101.4%	101.7%	100% & over	
060 4,159 Yes 0 0 0	4,159 Yes 0 0 0	Yes 0 0	0	0	2	9	4,06		4,060	PGE	4,159	PGE	102.0%	104.5%	102.4%	100% & over	
578 5,711 Yes 0 0 1	5,711 Yes 0 0 1	Yes 0 0	0	0		No	5,67	Irrigation district - Lathrop	5,678	PGE	5,711	PGE	102.7%	103.3%	100.6%	100% & over	
535 1,540 Yes 0 0	1,540 Yes 0 0	Yes 0 0	0	0	~	9	1,53;		1,535	PGE	1,540	PGE	95.3%	95.7%	100.3%	100% & over	
505 3,417 Yes 0 0 1	3,417 Yes 0 0	Yes 0 0	0 0	0		No	2,50	Irrigation district - Merced	3,260	PGE	3,417	PGE	76.8%	104.8%	104.8%	100% & over	
786 7,659 Yes 0 0	7,659 Yes 0 0	Yes 0 0	0 0	0		No	6,78	Irrigation district - Modesto	7,617	PGE	7,659	PGE	89.1%	100.6%	100.6%	100% & over	
015 0 No 0 2,083 Y	0 No 0 2,083 Y	No 0 2,083 Y	0 2,083	2,083		res	2,01		2,015	PGE	2,083	SCG	97.9%	101.2%	103.4%	100% & over	
338 7,083 Yes 0 0	7,083 Yes 0 0	Yes 0 0	0	0		No	4,83	Irrigation district - Modesto	6,789	PGE	7,083	PGE	71.3%	104.3%	104.3%	100% & over	
471 1,521 Yes 0 0	1,521 Yes 0 0	Yes 0 0	0	0		No	1,47		1,471	PGE	1,521	PGE	92.2%	95.4%	103.4%	100% & over	
292 1,295 Yes 0 0	1,295 Yes 0 0	Yes 0 0	0	0		No	1,29		1,292	PGE	1,295	PGE	98.9%	99.1%	100.2%	100% & over	
275 0 No 0 4,192	0 No 0 4,192	No 0 4,192	0 4,192	4,192		Yes	4,27;		4,275	PGE	4,192	scg	94.6%	92.8%	98.1%	95%-100%	\square
332 9,248 Yes 0 0	9,248 Yes 0 0	Yes 0 0	0	0		No	8,33.	Irrigation district - Merced	9,485	PGE	9,248	PGE	87.8%	97.5%	97.5%	95%-100%	
417 2,385 Yes 0 0	2,385 Yes 0 0	Yes 0 0	0	0		No	2,41		2,417	PGE	2,385	PGE	97.8%	96.5%	98.7%	95%-100%	
300 2.254 Yes n n	2 254 Yes 0 0	Yes n	0	C		Yes	2.30		2.300	ЧСР	2.254	ЦÜd	%6.76	96 0%	98.0%	95%-100%	<u> </u>

Š	- 	C	>	Υ ^{οο}	1001		1001	LUC	>		/00 00	>	>	
Yes		- C	× (Yes	1,291		1,291	LGE	Y DOA	PGE&SCG	98.8%	X	OF 70/	%001-%56
Yes			0	No	1,002	Irrigation district - Merced	1,002	E E	1,001	PGE	80.4%	95.2%	95.2%	95%-100%
Yes		0	0	No	2,845		2,845	PGE	2,796	PGE	96.9%	95.2%	98.3%	95%-100%
Yes		0	0	Yes	1,205		1,205	PGE	1,181	PGE	86.9%	85.2%	98.0%	95%-100%
No		0	4,146	Yes	4,173		4,173	PGE	4,146	SCG	104.9%	104.2%	99.4%	95%-100%
No	- 1	0	3,259	Yes	3,297		3,297	PGE	3,259	SCG	94.6%	93.5%	98.8%	95%-100%
Yes		0	0	No :	1,380		1,380	PGE	1,372	PGE	94.9%	94.4%	99.4%	95%-100%
Yes		0	0	Po No	3,303		3,303	PGE	3,174	PGE	100.0%	96.1%	96.1%	95%-100%
NO Voc	1		3,0/1	Yes	3,101 7 172		3,101	LGE DCE	3,071	SUG DCE	80.8%	81.3% 102.4%	99.U%	%001-%CR
Yes	1	0	1,095	Yes	6,816		6,816	PGE PGE	6,708	PGE&SCG	100.9%	99.3%	98.4%	95%-100%
Yes	1	0	×	Yes	2,336		2,336	PGE	×	PGE&SCG	9.96	×	×	95%-100%
No	1	×	5,464	Yes	X		X	PGE&SCE	5,464	SCG	×	101.0%	X	95%-100%
Yes	1	0	0	No	2,563	Irrigation district - Merced	2,914	PGE	2,822	PGE	88.0%	96.8%	96.8%	95%-100%
No		2,150	2,052	Yes	X		X	PGE&SCE	2,052	scg	×	100.8%	×	95%-100%
Yes		0	0	No	1,704		1,704	PGE	1,608	PGE	108.1%	102.0%	94.4%	90%-92%
No		1,739	1,576	Yes	1,739		1,739	SCE	1,576	SCG	86.6%	78.5%	90.6%	90%-95%
No		3,779	3,491	Yes	3,779		3,779	SCE	3,491	SCG	105.9%	97.9%	92.4%	90%-92%
Yes		0	0	No	2,128		2,128	PGE	2,005	PGE	98.5%	92.8%	94.2%	90%-95%
Yes		0	0	No 1	2,182		2,182	PGE	2,044	PGE	109.0%	102.1%	93.7%	90%-92%
Yes		0	0	No S	1,435		1,435	PGE	1,354	PGE	90.0%	84.9%	94.4%	90%-95%
No		1,314	1,208	Yes	1,314		1,314	SCE	1,208	SCG	110.0%	101.1%	91.9%	90%-95%
No X		3,404	3,162	Yes	3,404		3,404	SCE	3,162	SCG	105.0%	97.5%	92.9%	90%-95%
Yes		0	0 010 0	NO	1,184		1,184	PGE DOT: OOT	1,105	РGН ССТ	99.7% 102.0%	93.1%	93.3%	%GR-%/NR
Vac		921 U	21 N,C	No No	0,130 2.641		0,130 2,641		0,012 2.128	סכפ	102.370	97.U.70 05.0%	34.2% 00 2%	30.10-30.10 000/_050/
Yes		0	0	No N	1,320	Irrigation district - Merced	1,320	PGE	1,197	PGE	113.5%	102.9%	90.7%	90%-95%
No		0	4,614	Yes	4,939	, ,	4,939	PGE	X	PGE&SCG	111.6%	×	×	90%-92%
No		3,920	3,639	Yes	3,920		3,920	SCE	3,639	scg	115.5%	107.2%	92.8%	90%-92%
No		1,345	1,119	Yes	1,345		1,345	SCE	1,119	SCG	113.1%	94.1%	83.2%	80%90%
Yes		1,052	0 007	No >	1,052		1,052	SCE	898	PGE	91.5%	/8.1%	85.4%	80%-90%
ON 1		1,/84	1,460	Yes	1,/84		1,/84	SCE	1,460	SCG	105.7%	86.5%	81.8%	80%-90%
oN oN		3,169 7.371	2,658 6.120	Yes Yes	3,169 7.371		3,169	SCE	2,658 6.120	sce	117.5%	98.6% 90.8%	83.9% 83.0%	80%90%
No		1,811	1,377	Yes	1,811		1,811	SCE	1,377	scg	102.2%	77.7%	76.0%	70%-80%
No		4,937	3,180	Yes	4,937		4,937	SCE	3,180	scg	99.4%	64.0%	64.4%	20%-70%
Yes		2,797	0	Yes	X		X	PGE&SCE	1,362	PGE	×	59.0%	X	0.1%-50%
Yes		0	0	No	4,178		4,178	PGE	X	PGE	80.0%	×	×	0.1%-50%
Yes		0	0	٩	2,426		2,426	PGE	×	PGE	98.3%	×	×	0.1%-50%
- N		4	c	Ĩ			202.00				700.00	400.40/	100 00/	4000/ 0
Yes		- C		N0	30,121 00 775		30,121	LGE LOE	30,8U8	л п С	99.9%	100.1%	%Z'NN1	100% & OVEF
Yes Vac		> ×	0 6 562	N0 Vac	c///cZ		23,115	PGERSCE	24,252	PGERSCG	90.9%	%6.001	%0.201	100% & 0ver 100% & over
Vac			0,00		03 171	Dort of Stockton (small)	OK 7AD		07 802		06.3%	101 2%	101 20/	100% & over
Yes			0 0	on on	25.567		25.567	PGE	25.719	PGE	101.8%	102.4%	100.6%	100% & over
Ŋ	1	10.744	10.536	Yes	10.744		10.744	SCE	10.536	SCG	101_7%	%2.66	98.1%	95%-100%
N N	1	18.097	17,488	Yes	X		×	PGE&SCE	17,488	SCG	×	95.6%	×	95%-100%
Yes	1	0	0	No	258	Ludi Electric Utility	23,132	PGE	22,595	PGE	1.1%	97.7%	97.7%	95%-100%
Yes		0	0	No	11,715	•	11,715	PGE	11,535	PGE	107.4%	105.7%	98.5%	95%-100%
Yes		0	0	No	16,830		16,830	PGE	16,520	PGE	100.6%	98.7%	98.2%	95%-100%
Yes		0	0	No	22,443	Irrigation district - Merced	26,415	PGE	25,588	PGE	85.0%	96.9%	96.9%	95%-100%
No		19,284	18,579	Yes	19,284		19,284	SCE	18,579	SCG	102.1%	98.3%	96.3%	95%-100%
No :	1	45,079	44,260	Yes	45,079		45,079	SCE	44,260	SCG	101.4%	93.6%	98.2%	95%-100%
No		17.274	16.320	Yes	17.274		17.274	ECC ECC	16.320	SCG	105.0%	99.2%	94.5%	90%-92%

95%-100%	
X	
96.3%	
X	
PGE&SCG	
116,228	
PGE&SCE	
X	
X	
Yes	
35,668	
X	
Yes	
80,560	
116,470	
0.00	

	100% & over	100% & over 100% & over	100% & over 100% & over	100% & over 100% & over	100% & over	100% & over	100% & over	100% & over 100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & OVEF	100% & 0Ver	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & over	100% & OVEF	100% & over	100% & 0VEI	100% & 0VEI	100% & over		95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%
	× >	< >	× ×	126.0%	100.8%	125.7%	102.3%	107.5%	100.0%	114.2%	X	116.8%	117.3%	101.0%	102.9%	< >	105.9%	126.6%	101.7%	102.4%	100.6%	100.3%	104.8%	100.6%	103.4%	104.3%	103.4%	100.2%	00.2%	102.0%	104 20/	101.270	101.6%		×	95.9%	×	97.1%	97.0%	98.5%	99.3%	97.9%	98.2%	97.2%	98.0%	97.6%	98.5%	98.1%	97.5%	98.7%	98.0%	97.8%
	< >	< >	××	111.0%	103.0%	85.2%	104.7%	110.2%	83.7%	112.9%	300.0%	146.3%	133.6%	92.4%	105.6%	% / .CR	100.1%	98.4%	101.4%	104.5%	103.3%	95.7%	104.8%	100.6%	101.2%	104.3%	95.4%	99.1%	100.1%	100.9%	34.3%	101.2%	97.1%		×	81.7%	×	104.1%	83.2%	97.0%	89.6%	101.8%	104.3%	83.0%	92.7%	91.0%	82.0%	92.8%	97.5%	96.5%	96.0%	94.9%
	× >	< >	× ×	88.1%	102.1%	67.8%	102.3%	102.6%	83.7%	98.8%	×	125.2%	113.9%	91.4%	×0.201	< >	A 8%	77 7%	99.7%	102.0%	102.7%	95.3%	76.8%	89.1%	97.9%	71.3%	92.2%	98.9%	99.9%	98.9%	Ve 20	30.37/0	95.6%		×	85.2%	91.3%	107.1%	85.7%	98.5%	90.2%	103.9%	106.2%	85.3%	94.6%	93.2%	83.2%	94.6%	87.8%	97.8%	97.9%	97.0%
	× 200		X SCG	31 SCG	242 SCG	395 SCG	146 SCG	216 SCG 524 SCG	21 000	877 SCG	56 SCG	319 SCG	141 SCG	594 SCG	8/ PGE	180 SUG	19/ PGE	71 SCG	013 SCG	59 PGE	711 PGE	540 PGE	117 PGE	559 PGE	183 SCG	183 PGE	521 PGE			252 PGE			13 FGE		X SCG	120 PGE	X PGE&SCG	02 PGE	227 PGE	774 PGE	541 PGE	519 SCG	555 PGE	665 PGE	370 PGE	362 PGE	527 SCG	92 SCG	248 PGF	85 PGE	54 PGE	961 PGE
					2	9	4				-		4		3,1		-,- л	, - , -	2,0	4,1	5,7	1,5	3,4	7,6	2,0	2,0		1, 2, 0	30,0	24,2	0,210	31,C	165.7			7				2		4	4	(1)	9		4	4.1	6	2,3	2,2	3,5
			X PGE	104 PGE	240 PGE	553 SCE	436 SCE	201 SCE 381 PGF	220 PGF	330 SCE	X PGE	273 SCE	376 SCE	588 SCE	3,680 PGE		2 400 PGE	925 SCF	1,980 PGE	4,060 PGE	5,678 PGE	1,535 PGE	3,260 PGE	7,617 PGE	2,015 PGE	6,789 PGE	1,471 PGE	1,292 PGE	30,121 PGE			30,140 PGE	23,307 FGE 163,180 PGE	-	XPGE	438 PGE	359 PGE	105 PGE	234 PGE	786 PGE	545 PGE	530 SCE	565 PGE	581 PGE	684 PGE	371 PGE	535 PGE	4.275 PGE	9.485 PGF	2, 17 PGE	2,300 PGE	4,051 PGE
-																triat Turlach	STRICT - 1 URIOCK				strict - Lathrop		strict - Merced	rrict - Modesto		rict - Modesto					alitan (amall)																		strict - Merced			
																Irriantion di					Irrigation dis		Irrigation dis	Irrigation dist		Irrigation dist					Dort of Ctv																		Irrigation dis			
:	× >	< >	××	104	240	553	436	381	220	330	X	273	376	588	3,080	V Irricotion di		925	1,980	4,060	5,678 Irrigation dis	1,535	2,505 Irrigation dis	6,786 Irrigation dist	2,015	4,838 Irrigation dist	1,471	1,292	30,121 00 775	23,175	02 171 Dort of Ct	33, 17 1 FUILUL 31	163.180		×	438	359	105	234	786	545	530	565	581	684	371	535	4.275	8.332 Irrigation dis	2,417	2,300	4,051
	Yes X	Yes X	Yes X	Yes 104	Yes 240	Yes 553	Yes 436	Yes 201 Yes 381	No 220	Yes 330	Yes X	Yes 273	Yes 376	Yes 588	N0 3,680	Yes X Irriantion di		Yes 925	Yes 1.980	No 4,060	No 5,678 Irrigation dis	No 1,535	No 2,505 Irrigation dis	No 6,786 Irrigation dist	Yes 2,015	No 4,838 Irrigation dist	No 1,471	NO 1,292 No 26 707	NO 30,/2/	V0 23,775	No 02 171 Doct of Ctr		No 163.180		Yes X	No 438	Yes 359	No 105	No 234	No 786	No 545	Yes 530	No 565	Yes 581	Yes 684	No 371	Yes 535	Yes 4.275	No 8.332 Irrigation dis	No 2.417	Yes 2,300	No 4,051
	X Yes X v v.c. v	V VCC V	X Yes X X Vec X	131 Yes 104	242 Yes 240	695 Yes 553	446 Yes 436	216 Yes 201 524 Yes 381	0 No 220	377 Yes 330	156 Yes X	319 Yes 273	441 Yes 376	594 Yes 588	4 000 3,080	1,080 Yes X		1171 Yes 925	2,013 Yes 1,980	0 No 4,060	0 No 5,678 Irrigation di	0 No 1,535	0 No 2,505 Irrigation di	0 No 6,786 Irrigation dist	2,083 Yes 2,015	0 No 4,838 Irrigation dist	0 No 1,471	0 NO 1,292	0 NO 30,121	U NO 23,775	0,002 TES A 0 No 03.171 Dout of Str	0 NO 33,171 FULUE	0 No 163.180		X Yes X	0 No 438	344 Yes 359	0 No 105	0 No 234	0 No 786	0 No 545	519 Yes 530	0 No 565	0 Yes 581	0 Yes 684	0 No 371	527 Yes 535	4.192 Yes 4.275	0 No 8 332 Irrigation di	0 No 2.417	0 Yes 2,300	0 No 4,051
;	X Yes X			0 131 Yes 104	0 242 Yes 240	553 695 Yes 553	436 446 Yes 436	201 216 Yes 201 0 524 Yes 381	0 0 No 220	330 377 Yes 330	0 156 Yes X	273 319 Yes 273	376 441 Yes 376	588 594 Yes 588	V V 3,680			925 1171 Yes 925	0 2,013 Yes 1,980	0 0 No 4,060	0 No 5,678 Irrigation di	0 0 No 1,535	0 No 2,505 Irrigation di	0 No 6,786 Irrigation dist	0 2,083 Yes 2,015	0 0 No 4,838 Irrigation dist	0 0 No 1,471	0 0 0 1,292	0 0 0 30,121	C 23,1/15	0, 0, 10, N, 0, 171 Dout of Str		0 No 0 163.180		0 X Yes X	0 0 No 438	0 344 Yes 359	0 0 No 105	0 0 No 234	0 0 No 786	0 0 No 545	530 519 Yes 530	0 0 No 565	0 0 Yes 581	0 0 Yes 684	0 0 No 371	0 527 Yes 535	0 4.192 Yes 4.275	0 0 No 8 332 Irrigation di	0 0 No 2.417	0 0 Yes 2,300	0 0 A 4,051
:	VO X YES X YES X	Yes U X Yes X	NO U X YES X NA Y YAS X YAS	No 0 131 Yes 104	No 0 242 Yes 240	No 553 695 Yes 553	No 436 446 Yes 436	No 201 216 Yes 201 No 0 524 Yes 381	Yes 0 0 No 220	No 330 377 Yes 330	No 0 156 Yes X	No 273 319 Yes 273	No 376 441 Yes 376	No 588 594 Yes 588	Yes U No 3,68U	VCC A I,UGU TES X	Vec D No 2400	No 925 1171 Yes 925	No 0 2,013 Yes 1,980	Yes 0 0 No 4,060	Yes 0 0 No 5,678 Irrigation di	Yes 0 0 No 1,535	Yes 0 0 No 2,505 Irrigation di	Yes 0 0 No 6,786 Irrigation dist	No 0 2,083 Yes 2,015	Yes 0 0 No 4,838 Irrigation dist	Yes 0 0 No 1,471	Yes 0 0 0 No 1,292	Yes 0 0 NO 36/12/	Yes U U NO 23/7/5	V ₂ 0,302 155 A		Yes 0 0 0 No 163,180		No 0 X Yes X	Yes 0 0 No 438	No 0 344 Yes 359	Yes 0 0 No 105	Yes 0 0 No 234	Yes 0 0 No 786	Yes 0 0 No 545	No 530 519 Yes 530	Yes 0 0 No 565	Yes 0 0 Yes 581	Yes 0 0 Yes 684	Yes 0 0 No 371	Yes 0 527 Yes 535	No 0 4.192 Yes 4.275	Yes 0 0 No 8 332 Irrigation di	Yes 0 0 No 2.417	Yes 0 0 Ves 2,300	Yes 0 0 No 4,051
	V V20 V V20 V V20 V		D NO VA YA	0 No 0 131 Yes 104	0 No 0 242 Yes 240	0 No 553 695 Yes 553	0 No 436 446 Yes 436	0 No 201 216 Yes 201 0 No 0 524 Yes 381	220 Yes 0 0 1 No 220	0 No 330 377 Yes 330	0 No 0 156 Yes X	0 No 273 319 Yes 273	0 No 376 441 Yes 376	200 No 588 594 Yes 588	3,/8/ Yes 0 0 0 No 3,680	1 107 VCC 0 0 NO VC VCC 0 0 NC VC VC VC VC VCC 0 0 NC VC	7.43/ TES U U NO A INIGAUOTOL	0 Nn 925 1171 Yes 925	0 No 0 2,013 Yes 1,980	4,159 Yes 0 0 No 4,060	5,711 Yes 0 0 No 5,678 Irrigation di	1,540 Yes 0 0 No 1,535	3,417 Yes 0 0 No 2,505 Irrigation di	7,659 Yes 0 0 No 6,786 Irrigation dist	0 No 0 2,083 Yes 2,015	7,083 Yes 0 0 No 4,838 Irrigation dist	1,521 Yes 0 0 No 1,471	1,295 Yes U U NO 1,292 26.000 V.20 0 0 NL 26.777	30,000 TeS U U NO 30,/2/	24,252 Yes U No 23,775 E 707 V.c. V E EEO V.c. V	07 000 V.C. A 0,302 TES A	25.710 Voc 0 0 NO 33,171 F01.01 01	165.731 Yes 0 0 No 163.180		0 No 0 X Yes X	420 Yes 0 0 No 438	X No 0 344 Yes 359	102 Yes 0 0 No 105	227 Yes 0 0 No 234	774 Yes 0 0 No 786	541 Yes 0 0 No 545	0 No 530 519 Yes 530	555 Yes 0 0 No 565	565 Yes 0 0 Yes 581	670 Yes 0 0 Yes 684	362 Yes 0 0 No 371	0 Yes 0 527 Yes 535	0 No 0 4.192 Yes 4.275	9 248 Yes 0 0 No 8 332 Initiation di	2,336 Yes 0 0 No 2,417	2,254 Yes 0 0 Yes 2,300	3,961 Yes 0 0 No 4,051
		V V V V V V V V V V V V V V V V V V V	X U NO U X YES X	104 0 No 0 131 Yes 104	240 0 No 0 242 Yes 240	0 0 No 553 695 Yes 553	0 0 No 436 446 Yes 436	0 0 0 No 201 216 Yes 201 381 0 No 0 524 Yes 381	220 220 Yes 0 0 No 220	0 0 No 330 377 Yes 330	X 0 No 0 156 Yes X	0 0 No 273 319 Yes 273	0 0 No 376 441 Yes 376	0 0 No 588 594 Yes 588		1,000 U NO A 1,000 YES A V.	2 400 2 552 Vec 0 No No 2 400	0 0 N NO 925 1171 Yes 925	1.980 0 No 0 2.013 Yes 1.980	4,060 4,159 Yes 0 0 No 4,060	5,678 5,711 Yes 0 0 No 5,678 Irrigation di	1,535 1,540 Yes 0 0 No 1,535	2,505 3,417 Yes 0 0 No 2,505 Irrigation di	6,786 7,659 Yes 0 0 No 6,786 Irrigation dist	2,015 0 No 0 2,083 Yes 2,015	4,838 7,083 Yes 0 0 No 4,838 Irrigation dist	1,471 1,521 Yes 0 0 No 1,471	1,292 1,295 Yes U U NO 1,292 26.575 26.606 V.20 0 U NO 1,292	30,12/ 30,000 fes U U NO 30,12/	23,1/5 24,252 Yes U U V NO 23,1/5	12,130 3,701 155 A 0,302 155 A 0,302 155 A	30,111 31,032 TES U U NU 33,171 FULUIOL 05.667 05.740 Vac 0 N 0	163.180 165.731 Yes 0 0 No 163.180		X 0 No 0 X Yes X	438 420 Yes 0 0 No 438	359 X No 0 344 Yes 359	105 102 Yes 0 0 No 105	234 227 Yes 0 0 No 234	786 774 Yes 0 0 No 786	545 541 Yes 0 0 No 545	0 0 No 530 519 Yes 530	565 555 Yes 0 0 No 565	581 565 Yes 0 0 Yes 581	684 670 Yes 0 0 Yes 684	371 362 Yes 0 0 No 371	535 0 Yes 0 527 Yes 535	4.275 0 No 0 4.192 Yes 4.275	8.332 9.248 Yes 0 0 No 8.337 Irrigation di	2,417 2,385 Yes 0 0 No 2,417	2,300 2,254 Yes 0 0 Yes 2,300	4,051 3,961 Yes 0 0 No 4,051

	1	1				1	1				1	- 1				1	1	- I						- I	1					1	1			1	1							1	1		- 1					
10001	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	95%-100%	%001-%C6	95%-100%	95%-100%	1010	90%-95%	90%-95%	90%-95%	%G8-%D8	%GE-%DE	90.02-02.00	%96-%06 %90%-92%	90%-95%	90%-95%	90%-95%	90%-95%	90%-95%	90%-95%	90%-95%	90%-95%	90%-95%	30.%-92% 00%-02%	90%-95%	90%-95%	90%-95%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	%U0-%U8	/0UU /0U0
200 10	95.2%	90.2% 98.0%	99.4%	98.8%	99.4%	96.1%	99.0%	99.3%	98.4%	×	×	96.8%	×	98.1%	×	97.7%	98.5%	98.2%	96.9%	90.3%	98.2%	×	;	×	X	93.3%	93.0%	90.0% 04.40/	34.4%	92.1%	80.6%	92.4%	94.2%	93.7%	94.4%	91.9%	92.9%	93.3%	94.2%	92.3% 00.7%	×	92.8%	94.5%	×	×	×	87.5%	88.0%	A 8%	V/ D. 10
)00 L 0	95.2%	93.2% 85.2%	104.2%	93.5%	94.4%	96.1%	87.9%	102.4%	99.3%	×	101.0%	96.8%	100.8%	99.7%	95.6%	97.7%	105.7%	98.7%	96.9%	90.3%	99.6%	96.3%	;	× ×	×	66.7%	9/7.7%	/1/.2%	93.1%	90.2% 102.0%	78.5%	97.9%	92.8%	102.1%	84.9%	101.1%	97.5%	93.1%	97.0%	%0.CR	X X	107.2%	99.2%	×	×	×	84.3%	×0.4%	₩ 707	2/ t.200
101 00	80.4%	90.9% 86.9%	104.9%	94.6%	94.9%	100.0%	88.8%	103.2%	100.9%	90.6%	×	88.0%	×	101.7%	×	1.1%	107.4%	100.6%	85.0%	102.1%	101.4%	×	3	× >	×	/1.5%	90.5%	%Q.CQ	90.0%	97.3%	86.6%	105.9%	98.5%	109.0%	%0.06	110.0%	105.0%	99.7%	102.9%	113.0%	111.6%	115.5%	105.0%	×	×	×	96.4%	97.1%	07.2.11 08.4%	00.T.UC
L	PGE	DGE -	SCG	SCG	PGE	PGE	SCG	PGE	PGE&SCG	PGE&SCG	SCG	PGE	SCG	SCG	scg	PGE	PGE	PGE	PGE	200 200	SCG	PGE&SCG		SCG	SCG	PGE	רפ 100	LGE DOF	л с С С С	PGF	SCG	SCG	PGE	PGE	PGE	SCG	SCG	PGE	SCG	LGE DCE	PGE&SCG	SCG	SCG	PGE	PGE	sce	SCG	PGE	PGE&SUG	
	1,777	2,730 1.181	4,146	3,259	1,372	3,174	3,071	7,119	6,708	×	5,464	2,822	2,052	10,536	17,488	22,595	11,535	16,520	25,588	10,079	44,260	116,228	;	××	×	236	424	242	100	1608	1.576	3,491	2,005	2,044	1,354	1,208	3,162	1,105	3,012	2,430	X	3,639	16,320	×	×	×	558	000	317	1 1 1
	PGE	PGE	PGE	PGE	PGE	PGE	PGE	PGE	PGE	PGE	PGE&SCE	PGE	PGE&SCE	SCE	PGE&SCE	PGE	PGE	PGE	PGE	SOT DOT	SCE	PGE&SCE	L	PGE	SCE	PGE	NCE T	PGE DCE		PGF PGF	SCE	SCE	PGE	PGE	PGE	SCE	SCE	PGE	PGE&SCE	LGE DCE	PGE	SCE	SCE	PGE	PGE	SCE	PGE	PGE	1 2 2 2 2	
	7 045	2,043	4,173	3,297	1,380	3,303	3,101	7,172	6,816	2,336	×	2,914	×	10,744	×	23,132	11,715	16,830	26,415	19,284	45,0/9	×		× >	×	253	403	709	9 4 7 1	1704	1.739	3,779	2,128	2,182	1,435	1,314	3,404	1,184	3,196	1 320	4,939	3,920	17,274	×	×	×	638	032	361	- ^^
	Irrigation district - Merced											Irrigation district - Merced				Ludi Electric Utility			Irrigation district - Merced																					Irrination district - Marcad				Irrigation district - Merced						
	1,500	1.205	4,173	3,297	1,380	3,303	3,101	7,172	6,816	2,336	×	2,563	×	10,744	×	258	11,715	16,830	22,443	19,284	45,079	×	3	×	×	253	453	200	9 4	1 704	1.739	3,779	2,128	2,182	1,435	1,314	3,404	1,184	3,196	1 320	4,939	3,920	17,274	×	×	×	638	032	361	100
:	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes	;	Yes	Yes	No	Yes	No No		Yes No	Yes	Yes	No	No	No	Yes	Yes	No Š	Yes	on on	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	165 Vac	- 60
•	0		4,146	3,259	0	0	3,071	0	1,095	×	5,464	0	2,052	10,536	17,488	0	0	0	10 570	10,5/9	44,260	35,668		×	×	0	424			001	1.576	3,491	0	0	0	1,208	3,162	0	3,012		4.614	3,639	16,320	0	0	×	558	105	180	7 4 4
¢	0		0	0	0	0	0	0	0	0	×	0	2,150	10,744	18,097	0	0	0		19,204	45,0/9	×	¢	0	×	152	453				1.739	3,779	0	0	0	1,314	3,404 2	0	927		0	3,920	17,274	0	0	X	0			> <
;	Yes	Yes	No	No	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	ON 2	No Š	Yes	;	Yes	No	Yes		Yes	res	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Yes	Yec	No	No	No	Yes	Yes	No	°N	Yes	٧٥ ٧٥c	- CO V
	1,777	1.181	0	0	1,372	3,174	0	7,119	5,613	2,201	0	2,822	0	0	0	22,595	11,535	16,520	25,588			80,560				236		24C	000	1 608	0	0	2,005	2,044	1,354		0	1,105	0	2,430	X	0	0	×	×			000	317	>
	1,500	1.205	4,173	3,297	1,380	3,303	3,101	7,172	6,816	2,336	5,621	2,563	×	0	×	258	11,715	16,830	22,443		0	116,470	;	× (0	253		200	9 4	1704	0	0	2,128	2,182	1,435	0	0	1,184	2,269	1 320	4,939	0	0	×	×	0	638	0.32	361	100
000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	1.10	0.00	0.47	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	20.0

80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%	80%-90%
×	82.0%	80.3%	84.3%	83.6%	82.6%	83.2%	85.4%	81.8%	83.9%	83.0%
76.6%	85.9%	91.2%	86.3%	81.5%	84.5%	94.1%	78.1%	86.5%	98.6%	90.8%
×	104.8%	113.5%	102.3%	97.4%	102.4%	113.1%	91.5%	105.7%	117.5%	109.4%
6 SCG	8 SCG	4 PGE	9 SCG	6 SCG	3 SCG	9 SCG	8 PGE	0 SCG	8 SCG	0 SCG
65	51	42	40	60	68	1,11	89	1,46	2,65	6,12
PGE&SCE	SCE	BGE	5 SCE	5 SCE	SCE	5 SCE	P SCE	I SCE) SCE	SCE
×	632	528	485	725	827	1,345	1,052	1,784	3,169	7,371
×	632	528	485	725	827	1,345	1,052	1,784	3,169	7,371
Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
656	518	0	409	606	683	1,119	0	1,460	2,658	6,120
756	632	0	485	725	827	1,345	1,052	1,784	3,169	7,371
No	No	Yes	No	No	No	No	Yes	No	No	No
0	0	424	0	0	0	0	898	0	0	0
×	0	528	0	0	0	0	0	0	0	0
00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	00.0	0.00

700/2 BU0/2	70%-80%	70%-80%	70%-80%	70%-80%	70%-80%	70%-80%	70%-80%	70%-80%	70%-80%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	50%-70%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	0.1%-50%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%	Zero%
>	××	×	73.7%	70.4%	72.0%	70.5%	×	74.4%	76.0%	×	X	61.8%	67.9%	51.6%	64.9%	62.7%	62.7%	×	59.3%	64.4%	×	×	×	43.9%	×	49.5%	43.6%	×	×	×	×	×	0.0%	0.0%	0.0%	0.0%	0.0%	%0.0	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
>	××	×	94.1%	79.0%	69.2%	69.0%	×	89.3%	77.7%	×	X	67.3%	72.9%	41.7%	85.8%	80.3%	63.5%	91.2%	51.3%	64.0%	×	×	×	35.3%	×	51.3%	47.3%	×	×	59.0%	×	×	0.0%	0.0%	0.0%	%0.0	0.0%	0.0%	0.0%	0.0%	0.0%	%0.0	0.0%	0.0%	0.0%
>	××	105.1%	127.7%	112.2%	96.2%	97.8%	50.8%	120.1%	102.2%	×	×	109.0%	107.5%	80.9%	132.3%	128.0%	101.3%	×	86.4%	99.4%	×	104.1%	×	80.5%	86.3%	103.5%	108.6%	116.1%	58.4%	×	%0.66	98.3%	×	×	×	99.2%	139.2%	118.4%	107.4%	211.9%	106.9%	85.4%	×	105.9%	88.7%
	X SCG	X PGE	370 SCG	317 PGE	108 SCG	160 SCG	X PGE	151 PGE	377 SCG	X PGE	X PGE	165 SCG	196 PGE	116 SCG	173 PGE	148 SCG	202 PGE	165 SCG	62 PGE	180 SCG	X SCG	X PGE	X PGE	136 PGE	X PGE	264 PGE	285 SCG	X PGE	X SCG	362 PGE	X PGE	X PGE	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None	0 None
				9					1,3				7		7	CE		CE		3,1										CE 1,0					CE								CE		
	× LGE	104 PGE	502 PGE	876 SCE	150 PGE	227 PGE	127 PGE	203 PGE	1,811 SCE	X PGE	X PGE	267 PGE	731 PGE	225 SCE	729 PGE	714 PGE&S	322 PGE	X PGE&S	273 PGE	4,937 SCE	X PGE	126 PGE	X PGE	310 PGE	201 PGE	533 SCE	654 SCE	223 PGE	243 SCE	X PGE&S	4,178 PGE	2,426 PGE	X PGE	X PGE	X PGE&S	119 PGE	206 SCE	122 PGE	130 SCE	142 PGE	512 PGE	117 SCE	X PGE&S	108 PGE	134 SCE
																																									Irrigation district - Merced				
>	××	104	502	876	150	227	127	203	1,811	×	X	267	731	225	729	714	322	×	273	4,937	×	126	×	310	201	533	654	223	243	×	4,178	2,426	×	×	×	119	206	122	130	142	512	117	X	108	134
Voc	Yes	No	Yes	No	Yes	Yes	No	No	Yes	No	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	Yes	No	No	No	No	No	Yes	No	Yes	Yes	No	No	No	No	Yes	No	No	No	No	No	No	No	Yes	No	Yes
>	×	0	370	0	108	160	0	0	1,377	0	0	165	0	116	0	448	0	165	0	3,180	×	0	0	0	0	0	285	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n
C	0	0	0	876	0	0	0	0	1,811	0	0	0	0	225	0	289	0	×	0	4,937	0	0	0	0	0	533	654	0	243	2,797	0	0	0	0	×	0	206	0	130	0	0	117	×	0	134
Voc	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes	N	Yes	8	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	No
C	0	×	0	617	0	0	×	151	0	×	X	0	496	0	473	0	202	0	162	0	0	×	×	136	×	264	0	×	0	1,362	×	×	0	0	0	0	0	0	0	0	0	0	0	0	n
>	××	104	502	0	150	227	127	203	0	×	X	267	731	0	729	425	322	260	273	0	×	126	×	310	201	0	0	223	0	×	4,178	2,426	×	×	108	119	0	122	0	142	512	0	×	108	D
900	0.37	00.0	00.0	0.00	0.25	00.0	0.00	0.00	00.0	00.0	0.00	0.02	0.00	1.50	0.00	00.0	0.00	0.00	0.00	0.00	0.85	2.45	2.16	0.00	0.05	0.00	0.00	1.82	0.00	0.00	0.00	0.00	2.92	0.00	0.01	1.34	3.17	2.70	0.63	2.81	4.18	1.80	1.21	3.58	0.29

		Chu Cantau	Other Delivery	Old Contact	Children of	Chi Cantar	City Delivery	C. Li Contar	Other Delivery	Minimum Distance	Minimum Distance	Minimum Distance	
#	Community Name	City Center Point to PGE	City Polygon Edge to PGE	City Center Point to PGE	City Polygon Edge to PGE	City Center Point to SCG	City Polygon Edge to SCG	City Center Point to SCG	City Polygon Edge to SCG	Minimum Distance to Transmission	Minimum Distance to Distribution	Minimum Distance to Distribution or	Old Miles to Gas Line (from Draft Report)
		Gas Trans (miles)	Gas Trans (miles)	Gas Dist (miles)	Gas Dist (miles)	Gas Trans (miles)	Gas Trans (miles)	Gas Dist (miles)	Gas Dist (miles)	Line (miles)	Line (miles)	Transmission Line (miles)	(miles)
-	ACAMPO CDP	0.3933	0000.0	0.0166	0.0000					0.0000	0.0000	0.0000	0.0000
2	ALLENSWORTH CDP	17.8651	16.7816	18.3608	17.2340	3.7840	2.7134	1.1400	0.0102	2.7134	0.0102	0.0102	0.0080
ŝ	ALPAUGH CDP	15.8999	15.1868	19.7223	19.2016	9.2650	8.7611	0.5211	0.0229	8.7611	0.0229	0.0229	0.0229
4	ARMONA CDP	18.2311	17.3931	16.5514	15.6042	5.6809	4.8883	0.2945	0.0000	4.8883	0000.0	0.0000	0.0000
2	ARVIN CITY	1.8006	0.1852	2.0753	0.5594	14.3194	12.7474	0.0038	0.0000	0.1852	0000'0	0.0000	0.0000
9	ATWATER CITY	0.7604	0.0000	0.0450	0.0000					0.0000	00000	0.0000	0.0000
7	AUGUST CDP	0.6410	0.0680	0.0200	0.0000					0.0680	0.0000	0.000	0.0680
8	AVENAL CITY	0.9467	0.0000	1.4428	0.0000	0.2249	0.0000	0.2251	0.0000	0.0000	0.0000	0.000	0.0000
6	BAKERSFIELD CITY	1.7099	0.0000	0.0253	0.0000	5.9053	0.0000	1.8556	0.0000	0.0000	0.0000	0.0000	0.0000
10	BEAR CREEK CDP	0.1071	0.0047	0.0358	0.0000					0.0047	0.0000	0.0000	0.0047
11	BEAR VALLEY SPRINGS CDP	1.1680	0.0000	0.3734	0.0000	20.7392	17.0033	4.9627	1.0594	0.0000	0.0000	0.000	0.0000
12	BIOLA CDP	1.4660	0.9913	0.1069	0.0000					0.9913	0.0000	0.0000	0.9913
13	BORON CDP	1.7878	0.0000	0.5411	0.0000	8.2200	6.0500	20.5534	18.2743	0.0000	0.0000	0.0000	6.0495
14	BOWLES CDP	1.7571	0.9978	0.8263	0.0579	20.5663	19.8115	1.8241	1.0718	0.9978	0.0579	0.0579	0.9978
15	BUTTONWILLOW CDP	5.1380	3.4724	6.6353	4.4982	8.8240	5.7558	0.2123	0.0000	3.4724	0.0000	0.0000	0.0000
16	CALIFORNIA CITY CITY	9.2352	0.0000	8.5023	4.4587	22.9037	13.1355	7.7478	0.0000	0.0000	0.0000	0.000	0.0000
17	CALWA CDP	0.8629	0.4121	0.0247	0.0000					0.4121	0.0000	0.000	0.4121
18	CANTUA CREEK CDP	3.8282	2.4470	4.0290	2.5400					2.4470	2.5400	2.4470	2.4470
19	CARUTHERS CDP	3.0930	2.0847	6.2495	5.3925	15.7275	15.1295	0.8432	0.0000	2.0847	0.0000	0.000	0.0000
20	CHEROKEE STRIP CDP	3.9733	3.5667	3.9798	3.5741	0.0213	0.0000	1.1010	0.7579	0.0000	0.7579	0.0000	0.0000
21	CHINA LAKE ACRES CDP	5.3582	4.0687	0.0390	0.0000					4.0687	000000	0.0000	0.0000
22	CHOWCHILLA CITY	0.1095	0.0000	0.1299	0.0000					0.0000	000000	0.0000	0.0000
23	CLOVIS CITY	1.3737	0.0000	0.0013	0.0000					0.0000	0000.0	0.0000	0.0000
24	COALINGA CITY	2.1214	0.0000	2.1007	0.0116					0.0000	0.0116	0.0000	0.0000
25	COLLIERVILLE CDP	0.3309	0.0000	0.1032	0.0000					0.0000	0.0000	0.0000	0.0000
26	COUNTRY CLUB CDP	1.2166	0.4953	0.1083	0.0000					0.4953	0000.0	0.0000	0.4953
27	CRESSEY CDP	2.3037	1.5243	2.1788	1.3444					1.5243	1.3444	1.3444	1.5243
28	CUTLER CDP	18.2198	17.3062	17.2524	16.3080	15.8081	15.4142	0.2434	0.0000	15.4142	0.0000	0.0000	0.0000
29	DEL REY CDP	1.4748	0.9937	1.9362	1.2447	24.9897	24.3369	0.0145	0.0000	0.9937	0.0000	0.0000	0.0000
30	DELANO CITY	17.4752	13.5988	17.7228	13.8219	0.7109	0.0000	0.2881	0.0000	0.0000	00000	0.0000	0.0000
31	DELFT COLONY CDP	10.6024	10.4288	8.8466	8.6813	13.0632	12.9103	0.3904	0.2268	10.4288	0.2268	0.2268	0.2259
32	DENAIR CDP	0.0758	0.0000	0.0152	0.0000					0.0000	0000.0	0.0000	0.0000
33	DINUBA CITY	12.4628	10.2300	10.9816	8.7284	15.3380	14.0577	0.0339	0.0000	10.2300	0.0000	0.0000	0.0000
Ω4		1.248U 5 4504	37.0C.U	0.022744	0.000					0.5UZ8	0.0000	0.000	0.5028
30		0.4094	CI /4.4	3.1711	20.1000	0010	10001	1022 0	34776	CI /4.4	2.1000	2.1000	GL/474
30		22.1029	21.6323	32./800	32.3098	14.8138	14.2334	3.1124	3.1/30	14.2334	3.1/30	3.1/30	3.1/30
3/		0.2900	4.6860	3002 50	4.4940	0.1971	0.000	1.2011	0.0000	0.000	1210.0	0.0000	0,000
000		23 2807	30 77 05	13 3008	A1 0050	10 6755	17 5801	0.0477		17 5801		0,000 0	0.0000
40		31 8618	31 3740	29 9203	20 4313	4 9087	4 4363	1.8283	0.0000	4 4363	1 4964	0.0000	0.0000
41	EASTON CDP	0.9995	0.0000	0.0001	0.0000	23.3613	22.5869	4.6140	3.3747	0.0000	0.0000	0.0000	0.0000
42	EDMUNDSON ACRES CDP	4.0902	3.8322	4.2585	4.0056	15.5864	15.3365	1.0773	1.0045	3.8322	1.0045	1.0045	1.0045
43	EL NIDO CDP	3.6012	2.7003	3.7903	2.8875					2.7003	2.8875	2.7003	2.7003
44	EL RANCHO CDP	39.3165	39.0546	37.3949	37.1319	16.5601	16.2865	1.0653	0.8367	16.2865	0.8367	0.8367	0.8367
45	ESCALON CITY	0.1577	00000	0.0985	0.0000		011101			0.0000	0.0000	0.0000	0.0000
40		32.8085	31.6131	30.9020	29.7073	d/U/.41	12./143	U. 16UY	0,000	12./143	0.0000	0.000	0.000
4	FAIRMEAD CDP	0.2111	0,000	/600.0	0,000					0.000	0.000	0.000	0.0000

	City Center Point to PGE	City Polygon Edge to PGE	City Center Point to PGE	City Polygon Edge to PGE	City Center Point to SCG	City Polygon Edge to SCG	City Center Point to SCG	City Polygon Edge to SCG	Minimum Distance to Transmission	Minimum Distance to Distribution	Minimum Distance to Distribution or	Old Miles to Gas Line
	Gas Trans (miles)	Gas Trans (miles)	Gas Dist (miles)	Gas Dist (miles)	Gas Trans (miles)	Gas Trans (miles)	Gas Dist (miles)	Gas Dist (miles)	Line (miles)	Line (miles)	Transmission Line (miles)	(monution the monution) (miles)
	29.5842	28.4087	27.6596	26.4961	11.8919	10.8441	0.5174	0.0000	10.8441	00000	0.0000	0.0000
	5.0045	4.4115	0.1097	0.0000	0.6531	0.1759	0.6405	0.0488	0.1759	0000.0	0.0000	0.0488
	0.2091	0.0000	0.0401	0.0000					0.0000	00000	0.0000	0.0000
1	0.9836	0.0000	0.1485	0.0000	1.0189	0.0000	0.5424	0.0000	0.0000	00000	0.0000	0.0000
1	0.6723	0.0000	0.0240	0.0000	22.6848	21.5609	3.3380	1.7105	0.0000	0.0000	0.0000	0.0000
	0.6407	0.0000	0.0105	0.0000					0.0000	0.0000	0.000	0.0000
	24.7563	23.3007	24.5899	23.1574	3.8646	1.5340	0.7320	0.0000	1.5340	0.0000	0.0000	0.0000
	0.4532	0.0000	0.1520	0.0000					0.0000	0.0000	0.0000	0.0000
	0.4466	0.0000	0.0320	0.0000					0.0000	0.0000	0.0000	0.0000
	4.8252 4 E024	4.0537	1.1210	0.0466	0 2020	0 1 100	00070		4.0537	0.0466	0.0466	4.0537
1	4.0304	0.0000	0.0193	0.0000	60.00 S	0.1400	U.4320	0.0032	0.000	7600.0	0.000	7600.0
1	19.0276	17 5147	17 0892	0.0000	1 9375	0.9452	0.3169	0 0000	0.9452	00000	0.000	0,000
-	2.7684	1.6530	0.8536	0.0000		1	0	0000	1.6530	0.0000	0.0000	1.6530
+	0.5273	0.0000	2.4890	1.6769	2.0311	0.9952	0.9772	0.0042	0.0000	0.0042	0.0000	0.0000
+	1.4884	0.6607	0.0320	0.0000	9.4441	8.6298	5.4835	4.6331	0.6607	0.0000	0.0000	0.6607
+	0.7383	0.0000	0.0281	0.0000					0.0000	0.000	0.000	0.0000
	17.3013	14.0999	15.4967	12.2319	8.5886	6.5197	0.2164	0.0000	6.5197	0.0000	0.0000	0.0000
	18.8572	18.1449	16.9587	16.2493	9.5190	9.0238	0.9429	0.4735	9.0238	0.4735	0.4735	0.4735
	0.6826	0.0000	0.0061	0.0000					0.0000	0.0000	0.0000	0.0000
	8.2287	6.0167	0.2458	0.0000					6.0167	0.0000	0.0000	0.0000
	25.7444	24.7203	23.8972	22.8809	12.0671	11.2728	0.2425	0.0000	11.2728	0.0000	0.0000	0.0000
	1.8635	1.1361	1.6173	0.6298	27.3767	25.9350	26.5347	25.7633	1.1361	0.6298	0.6298	1.8500
	0.5357	00000	0.0911	0.0000					0.0000	0.0000	0.0000	0.0000
+	0.0103	0.0000	0.0141	0.0000	0000		0011	1 1001	0.0000	0.000	0.000	0.0000
	0.3/41 4.5487	0.0968	0.0108 2.6005	0.5132	6.8691 16.0432	0.5444 14.4295	0.0460	/804.c	0.0968 2.3846	0000.0	0.0000	0.0000
1	3.3887	3.2519	3.0706	2.8105					3.2519	2.8105	2.8105	3.2519
	24.4961	23.5839	24.2691	23.3471	6.6842	5.0649	0.2127	0.000	5.0649	0.000	0.0000	0.0000
	3.8981	1.8136	3.7570	2.1229	11.1245	9.5742	1.1304	0.0000	1.8136	0.0000	0.0000	0.0000
	4.1008	3.0247	2.0556	0.9806	11.0266	10.0220	0.4511	0.0000	3.0247	0.0000	0.0000	0.0000
	1.2430	0.0000	0.0532	0.0000					0.0000	0.0000	0.0000	0.0000
	5.1173	4.4404	4.9905	4.1813					4.4404	4.1813	4.1813	4.4404
	22.2246	19.3563	22.0712	19.2283	2.0268	0.0000	1.8605	0.0000	0.0000	0.0000	0.0000	0.0000
	0.3038 33 0784	33 3868	0.0042 3.2.1801	31 502/1	10 6753	101158	213618	1 8031	U.UUUU 10 1158	0.0000	0.0000	U.UUUU 1 8031
+	00.000	00.000	02.1001	26 7027	15 0000	10.1100	0 1055	00000	12.1130	00000	00000	10000
+	20.3040 28.8067	21.1210 28.5588	91.00.10	00.1001 76.6320	11.0077	10.0747	0.1000	0.5023	10.07.47	0.503	0.6023	0.5023
	0.0067	00000	0000	0,000,0	1760.11	1410.01	0.101	0700.0	0.0000	0,000	0,000,0	0,000
	0.1422	0,000	0000	0,0000					0.000	00000	0,000	0,000
+	0.9293	00000	0.0510	0,0000					0.0000	00000	0.000	0.0000
-	11.7728	11.2209	9.8940	9.3560	10.9240	10.3781	2.1910	1.8698	10.3781	1.8698	1.8698	1.8698
-	0.7962	0.0000	0.0349	0.0000					0.0000	0.000	0.000	0.0000
-	2.5864	1.2882	9.7364	7.9794	6.6509	5.3887	1.3205	0.0586	1.2882	0.0586	0.0586	0.0586
	1.5628	0.0000	1.5446	0.0000					0.0000	0.000	0.0000	0.0000
_	0.5734	0.0000	0.0068	0.0000					0.0000	0.0000	0.0000	0.0000
	0.4807	0.1413	0.0171	0.0000					0.1413	0.0000	0.0000	0.1413
-	0.4826	0.0000	0.0052	0.0000					0.0000	0.0000	0.0000	0.0000
+	0.3839	0.0000	0.0148	0.0000	2.9942	2.0435	0.1596	0.0000	0.0000	0.0000	0.0000	0.0000
_	31.7229	31.3099	29.7774	29.3617	0.4100	0.0033	0.6144	0.0000	0.0033	0000.0	0.0000	0.0000

R. 15-03-010 SJV

R.15-03-010 COM/MGA/lil

		City Center	City Polygon	City Center	City Polygon	City Center	City Polygon	City Center	City Polygon	Minimum Distance	Minimum Distance	Minimum Distance	Old Miles to Cas Line
#	Community Name	Point to PGE	Edge to PGE	Point to PGE	Edge to PGE	Point to SCG	Edge to SCG	Point to SCG	Edge to SCG	to Transmission	to Distribution	to Distribution or	(from Draft Report)
		uas i rans (miles)	uas trans (miles)	Gas DISt (miles)	Gas DISt (miles)	uas Irans (miles)	uas Irans (miles)	das Dist (miles)	Gas DISt (miles)	LINe (miles)	Line (miles)	I ransmission Line (miles)	(miles)
99	MAYFAIR CDP	0.2156	0.0000	0.0053	0.0000					0.0000	0.0000	0.0000	0.0000
100	MCFARLAND CITY	12.8578	12.1851	15.1213	13.5228	2.0564	0.0000	0.2361	0.0000	0.0000	0.0000	0.0000	0.0000
101	MENDOTA CITY	0.4638	0.0000	0.0393	0.0000					0.0000	0.0000	0.0000	0.0000
102		0.5624	0.0000 3 7568	0.0115 3 8002	0.0000 3 7506	0.4300	0 3726	1 1778	1 000	0.0000	0.0000	0.0000	0.0000
104	MO.IAVE CDP	1.3573	00000	15.3658	J. 7 3903 10. 3903	31 4591	0.3120 26 1425	0.2999	0.0000	0.0120	0.000	0.0000	0.0000
105	MONMOUTH CDP	4.6731	4.2952	3.8372	3.5835	17.7492	17.4354	0.1874	0.0000	4.2952	0.0000	0.0000	0.0000
106	MONSON CDP	16.8158	16.2449	15.1239	14.5656	12.5943	12.1454	2.3117	1.9361	12.1454	1.9361	1.9361	1.9361
107	NEWMAN CITY	0.0961	0.0000	0.0588	0.0000					0.0000	0.0000	0.0000	0.0000
108	OAKDALE CITY	0.0419	0.0000	0.0212	0.0000					0.0000	0.0000	0.0000	0.0000
109	OILDALE CDP	1.3901	0.0000	0.4105	0.0000	1.6307	0.0000	0.3585	0.0000	0.0000	0.0000	0.0000	0.0000
110	OROSI CDP	17.4730	16.4631	17.0178	16.1916	16.8159	15.6609	0.0641	0.000	15.6609	0.0000	0.0000	0.0000
111	PARKSDALE CDP	0.8687	0.0000	0.0055	0.0000					0.0000	0.0000	0.0000	0.0000
112	PARKWOOD CDP	0.2216	0000.0	0.0409	0.0000	or <u></u> oo				0.0000	0.0000	0.0000	0.0000
113	PARLIER CITY	4.3869	2.4913	3.6309	1.6101	20.7740	19.6836	0.2243	0.0000	2.4913	0.0000	0.0000	0.0000
114	PATTERSON TRACT CDP	22.5801	21.8814	20.6706	19.9718	7.9884	7.2195	0.7067	0.2542	7.2195	0.2542	0.2542	0.2542
115	PIXLEY CDP	28.0747	26.8614	28.6540	27.5060	1.8542	0.9998	0.6812	0.0000	0.9998	0.0000	0.0000	0.0000
116	PLAINVIEW CDP	39.6354	39.3416	38.3053	37.9236	11.1779	10.7816	0.5904	0.1275	10.7816	0.1275	0.1275	0.1275
11/	PLANAUA CUP	4./528	4.0101	0.0314	0.000	0 6660	0 0070	0 6607		4.0101 0.0076	0.000	0.0000	4.0101
110		33.0930 33.7130	32.3243 30.0505	31.200U A1 55A3	20.0335 26.7772	9.0009	0.30/0 175387	070010		0.90/0		0,000	0.000
120		16/20	2010.00	2 6115	30.2112	20.7503	12.0302	0.1043	1 7667	2000.21	1 76.67	0.0000	0.0000
101		15 0560	10.049/	0110.0	0110.0	0112	20.2 144 0.0775	1 404.7	/00/00	0.049/	100/1	0.0497	0.049/
121	RICHGROVE CUP DIVEDD ANK CITY	0.0570	0114.01	Z0.2224	20.7004	0140.8	C / / N.S	0.0110	0,000	C//0.6	0,000	0,000	0,000
100		1 100.0	00000	15 0012	0.0000 11 E072	04 444E	10,0045	0.4050		0.000	00000	0.000	0,0000
123		0.1630	0,0000	0.0150	00000	CI 51 .17	10.0945	U. 1303	0,000	0,0000		0,000	0.000
124	SANGED CITY	0.1003		10000		76 0030	77 8530	9 6E73	1 1161	0,0000		0,000	
126		0.1353		0.0041		20.3333	6000.77	C /CO.7	1014.1			0,000	
127	SELMA CITY	0.2496	00000	0.0175	0.0000	20.4009	18.6428	0.1336	0.0000	0.0000	0.0000	0.0000	0.0000
128	SEVILLE CDP	22.7279	21.9783	21.2288	20.3460	15.6378	14.8564	2.1116	1.2087	14.8564	1.2087	1.2087	1.2088
129	SHAFTER CITY	6.0191	0000.0	6.1408	2.8866	3.4778	0.0000	1.4996	0.0000	0.0000	0.0000	0.0000	0.0000
130	SMITH CORNER CDP	4.4694	4.1766	4.5648	4.2596	0.9154	0.6177	0.4483	0.2507	0.6177	0.2507	0.2507	0.2507
131	SOUTH DOS PALOS CDP	0.2321	0.0000	0.0436	0.0000					0.0000	0.0000	0.0000	0.0000
132	SOUTH TAFT CDP	1.5709	0.9983	0.0766	0.0000	1.2381	0.4857	0.4010	0.0000	0.4857	0.0000	0.0000	0.0000
133	SPRINGVILLE CDP	38.4079	37.3160	46.9694	46.0149	27.3982	25.9059	0.4870	0.0000	25.9059	0.0000	0.0000	0.0000
134	STEVINSON CDP	4.4121	3.5913	4.3972	3.5764					3.5913	3.5764	3.5764	3.5913
135		0.3935	0.000	11.0010	0.0000	15 0005	14 0101	0.000		0.0000	0.000	0.0000	0.000
130		39.315U	30.4241 4.4 5707	70071 4	40.1802	15.2383	14.0090	0.0003	0.0000	14.0393	0.000	0.0000	0.000
13/	SULIANA CUP	15.2529	19/0.41	14.4009	13./032	10.01 23	1060.01	0.0112	0.000	14.5/8/	0.000	0.0000	0.0000
130	SUNNYSIDE CDP	1.9583	0.0000	0.0203	0.0000	73710		1 5000		0,0000	0,000	0.000	0,000
140	TAFT HEIGHTS CDP	2.0023 1.2586	1 0004	0.0110		2.1/0/ 0.6449	0.0000	0.30.85		0.0000		0.0000	0,000
141	TAFT MOSSWOOD CDP	0.9104	0.1781	0.0600	0.000	0	100210	0000	2000	0.1781	00000	00000	0.1781
142	TARPEY VILLAGE CDP	0.0271	0.0000	0.0019	0.0000					0.0000	0.0000	0.0000	0.0000
143	TEHACHAPI CITY	2.7831	0.0703	7.3142	0.6446	26.7260	21.4206	0.8939	0.0000	0.0703	0.0000	0.0000	0.0000
144	TERMINOUS CDP	2.5612	1.8227	5.3766	4.5117					1.8227	4.5117	1.8227	1.8227
145	TERRA BELLA CDP	26.3477	25.5648	36.2644	35.0748	16.2067	15.0402	0.3480	0.0000	15.0402	0.0000	0.0000	0.0000
146	TEVISTON CDP	25.8801	24.8690	26.0038	24.9982	2.4603	1.5329	0.6730	0.0000	1.5329	0.0000	0.0000	0.0000
147	THORNTON CDP	0.2328	0.0000	0.1202	0.0000					0.0000	0.0000	0.0000	0.0000
140	THREE RUCKS CUP	0.5030	0.UU4U	1.271.0	0.000 20 7005	0 EDED		0020 0		0.0040	0,000	0.0000	0.0000
145		31.1100	30.4050	33.3493	32.7090	CCUC.U	0.000	U.3/9Z	0.000	0.000	0.0000	0.000	0.000

SJV Distances to Gas Pipelines
		City Center	City Polygon	Minimum Distance	Minimum Distance	Minimum Distance	Old Miles to Gas Line						
\$	Community, Nomo	Point to PGE	Edge to PGE	Point to PGE	Edge to PGE	Point to SCG	Edge to SCG	Point to SCG	Edge to SCG	to Transmission	to Distribution	to Distribution or	(from Droft Donort)
ŧ	COMMUNITY NAME	Gas Trans	Gas Trans	Gas Dist	Gas Dist	Gas Trans	Gas Trans	Gas Dist	Gas Dist	Line	Line	Transmission Line	(ITOITI DI AIL REPOIL)
		(miles)	(miles)	(miles)	(miles)								
150 TONYV	ILLE CDP	37.2277	37.0458	35.3130	35.1325	15.9348	15.7907	1.2281	1.0999	15.7907	1.0999	1.0999	1.0999
151 TOOLE	VILLE CDP	34.4409	34.2579	32.5429	32.3603	15.8825	15.7053	0.1475	0.0000	15.7053	0.0000	0.0000	0.0000
152 TRACY	CITY	1.1414	0.0000	0.0133	0.0000					0.0000	0.0000	0.0000	0.0000
153 TRANQ	UILLITY CDP	0.7103	0.0000	0.0173	0.0000					0.000	0.0000	0.0000	0.0000
154 TRAVE	R CDP	11.4410	10.6981	9.4900	8.7472	9.5271	8.8503	0.4343	0.0000	8.8503	0.000.0	0.0000	0.0000
155 TULAR	ECITY	30.2612	27.1563	28.3428	25.2311	2.4230	0.0000	0.1864	0.0000	0.0000	0.0000	0.0000	0.0000
156 TUPMA	N CDP	4.4565	3.5767	7.8350	6.9431	2.5562	1.7671	2.6070	1.8353	1.7671	1.8353	1.7671	1.7671
157 TUTTLE	E CDP	1.5326	0.5207	0.0033	0.0000					0.5207	0.0000	0.0000	0.5207
158 VALLEY	ACRES CDP	4.9994	3.5507	4.1490	2.6959	0.0680	0.0000	1.1704	0.0000	0.0000	0.0000	0.0000	0.0000
159 VALLEN	/ HOME CDP	4.5609	3.9080	3.6019	2.9200					3.9080	2.9200	2.9200	3.9080
160 VISALIA	A CITY	23.6248	18.5788	21.6746	16.6284	5.2808	0.0000	0.7188	0.0000	0.0000	0.0000	0.0000	0.0000
161 VOLTA	CDP	0.7747	0.0000	2.0193	1.2135					0.0000	1.2135	0.0000	0.0000
162 WASCC) CITY	6.5231	3.7042	6.4536	4.7740	2.1414	0.5899	0.4674	0.0000	0.5899	0.0000	0.0000	0.0000
163 WEEDF	ATCH CDP	2.3722	0.9555	3.3769	2.0036	13.0648	11.8596	2.6550	1.4252	0.9555	1.4252	0.9555	0.9555
164 WEST (SOSHEN CDP	18.2513	17.4745	16.3375	15.5253	2.4367	1.6086	0.8102	0.2899	1.6086	0.2899	0.2899	0.2899
165 WEST F	PARK CDP	2.5688	1.4790	0.0768	0.0000					1.4790	0.0000	0.0000	1.4790
166 WESTL	EY CDP	0.9335	0.0000	0.6148	0.0000					0.0000	0.0000	0.0000	0.0000
167 WINTOI	N CDP	0.7396	0.0000	0.0032	0.0000					0.0000	0.0000	0.0000	0.0000
168 WOODI	AKE CITY	31.0876	29.2445	29.3626	27.4999	18.9356	17.1042	0.3361	0.0000	17.1042	0.0000	0.0000	0.0000
169 WOOD/	VILLE CDP	36.8399	35.4226	37.7288	36.4582	6.5871	5.0256	0.4672	0.0000	5.0256	0.0000	0.0000	0.0000
170 YETTE	M CDP	21.2256	20.8924	19.5839	19.2452	14.5682	14.1385	0.4392	0.0786	14.1385	0.0786	0.0786	0.0786

Pipelines
to Gas F
ances t
JV Dist

nmunity potentially served	i municipality	rigation district
Comm	vith m	or irrig

R.15-03-010 COM/MGA/lil