

Docket	:	<u>A.23-08-013</u>
Exhibit Number	:	<u>CA-10</u>
Commissioner	:	<u>Alice Reynolds</u>
Admin Law Judge	:	<u>John Larsen</u>
Witness	:	<u>H. Eng</u>

**PUBLIC ADVOCATES OFFICE
CALIFORNIA PUBLIC UTILITIES COMMISSION**

**Testimony on Prudence of Operations
for
Thomas Fire and Debris Flow
Cost-Recovery Application**

System Protection

San Francisco, California
June 6, 2024

TABLE OF CONTENTS

	<u>Page</u>
I. INTRODUCTION.....	1
II. SUMMARY OF FINDINGS.....	1
III. BRIEF OVERVIEW OF AUTO RECLOSERS AND THEIR SETTINGS	2
IV. OVERVIEW OF OVERCURRENT RELAY.....	2
V. ANLAUF IGNITION.....	3
A. SCE changed the settings on RAR 1228 in 2014.....	3
B. Impact of RAR 1228 Setting Change.....	4
C. Timeline of Anlauf Ignition.....	5
VI. KOENIGSTEIN IGNITION	6
A. Electrical Event Records for December 4, 2017	6
B. Analysis of Event Records	7
C. SCE changed the settings on RAR 179 in 2014.....	8
D. Impact of RAR 179 Setting Change.....	9
E. Impact of Phase Fault Setting.....	9
VII. SCE DID NOT ADEQUATELY CONSIDER WILDFIRE RISK WHEN ADJUSTING RECLOSER SETTINGS.....	10
VIII. WITNESS QUALIFICATIONS – HERMAN ENG.....	14
ATTACHMENTS – Support Documents	

SYSTEM PROTECTION

I. INTRODUCTION

This testimony pertains to Southern California Edison Company's (SCE or Edison) application to recover costs associated with the December 2017 Thomas Fire and subsequent debris flows (Application 23-08-013).

7 This testimony presents the analysis of the Public Advocates Office at the
8 California Public Utilities Commission (Cal Advocates) regarding SCE's system
9 protection settings for the Castro circuit, and the prudence of SCE's practices and
10 operations in the time period leading up to the Anlauf and Koenigstein ignitions.

11 This testimony relates to specifically to Exhibit SCE-02, SCE's testimony on the
12 Anlauf and Koenigstein ignitions, and Exhibit SCE-03, SCE's testimony on prudence of
13 operations.

II. SUMMARY OF FINDINGS

15 SCE should have been more prudent with respect to adjusting all recloser settings
16 in fire risk zones on the Red Flag Warning days. On Red Flag Warning days, in addition
17 to disabling the reclose function of the reclosers, SCE should have adjusted the phase and
18 ground current settings to be more sensitive, which would have de-energized the lines
19 more quickly during a fault, minimizing the risk of wildfire ignition.

20 RAR-1228 and RAR-179 are the recloser devices on the Castro Circuit that should
21 have protected the circuit-segments where the Anlauf and Koenigstein ignitions
22 (respectively) occurred. SCE changed the recloser settings of RAR-1228 and RAR-179
23 to be less sensitive.¹ This sensitivity reduction caused the overcurrent relays to trip later,
24 at higher fault currents, and not de-energize the circuit segments in time to prevent
25 ignition.

¹ SCE response to data request CalAdvocates-SCE-A2308013-22, questions 4d & 5d, March 27, 2024, and attached documents “Castro AR 1228 Calc Sheet 1_8_2014” and “Castro AR 179 Calc Sheet 6_19_2014”.

1 **III. BRIEF OVERVIEW OF AUTO RECLOSES AND THEIR SETTINGS**

2 Auto reclosers are protective devices that can operate automatically when a circuit
3 experiences abnormally high currents. In the event of a fault or disturbance, such as a
4 temporary short circuit or momentary overcurrent, the auto recloser acts as an automatic
5 switch that opens and closes to isolate the fault and then to restore power supply quickly.

6 The auto recloser is composed of an overcurrent relay that automatically trips and
7 recloses a preset number of times. Tripping shuts off power to the circuit-segment
8 downstream of the auto recloser; reclosing restores the power to the line. The auto
9 recloser improves the reliability of electric service due to its ability to restore power
10 automatically after clearing temporary faults. It plays an important role in maintaining a
11 reliable and uninterrupted power supply.

12 Reclosers can be programmed with a range of protective settings using the
13 manufacturer's time-current characteristics curve (see Appendix A). The settings can be
14 adjusted to trip for a specified overload (or fault condition) and fault duration, as defined
15 by a time-current curve. This is accomplished through an overcurrent element of a relay,
16 which I discuss in greater depth in the following section.

17 Further, the reclosing function of an auto recloser can be disabled, which prevents
18 the device from reclosing even after a fault clears. This setting is often used during Red
19 Flag Warning days.²

20 **IV. OVERVIEW OF OVERCURRENT RELAY**

21 The overcurrent relay is embedded in the auto recloser. The overcurrent relay
22 protects power systems from excessive currents that can damage equipment and cause
23 faults, which can lead to fire. When the high current exceeds a preset current value and a
24 preset time interval, the recloser acts as a switch and deenergizes the downstream circuit
25 segment to prevent equipment damage and reduce safety hazards.

26 The overcurrent relay operates in an inverse tripping characteristic, meaning that
27 the higher the fault current, the faster (shorter) the tripping time. Conversely, the lower

² Exhibit SCE-03 at 56-58.

1 the fault current, the longer it takes for the overcurrent relay to trip. Increasing the
2 electric current and duration setting (that is, making it less sensitive) causes the relay to
3 trip at a higher fault current and/or longer duration.³

4 The fault current setting of the overcurrent relay is dependent on the short-circuit
5 current (SCC) of an electric system. The SCC is the highest electric current that can exist
6 in a particular system. It is much higher than the full load current of a system (that is, the
7 maximum current the equipment in a system can draw). The SCC is the traveling current
8 along the unintended path with no or very low resistance. This unintended path could be
9 two lines slapping together (phase-to-phase fault) or a line falling to the ground (phase-
10 to-ground fault).

11 According to Ohm's Law, voltage (V) is equal to current (C) multiplied by
12 resistance (R) or $V = C \cdot R$, or $C = V/R$. When R approaches zero and V stays constant, C
13 will increase to a much higher value. The SCC, depending on the total impedance of the
14 system, can be a few or many orders of magnitude higher than the full load current.
15 Thus, the current setting of the relay must be set much higher than the normal (or full
16 load) operating current of the system.

17 **V. ANLAUF IGNITION**

18 **A. SCE changed the settings on RAR 1228 in 2014.**

19 On January 8, 2014, SCE changed the protection settings on recloser RAR 1228.
20 The new settings were less protective.⁴ SCE increased the amperage of current that
21 would cause the recloser to trip (that is, to shut off the circuit-segment).

22 Table 1 shows how SCE changed the recloser settings on RAR 1228 on January 8,
23 2014.⁵

³ See Appendix A for further detail.

⁴ SCE response to data request CalAdvocates-SCE-A.23=08-013-22 question 4d, attachment "Castro AR 1228 Calc Sheet 1_8_2014".

⁵ SCE response to data request CalAdvocates-SCE-A2308013-22, question 4d, March 27, 2024, and attached documents "Castro AR 1228 Calc Sheet 1_8_2014".

Table 1
RAR 1228 Fault Current Settings

	Phase	Ground
Old Setting (prior to January 8, 2014)	100 A	15.8 A
New Setting (after January 8, 2014)	200 A	100 A

1 The new settings have higher fault current for phase-to-phase and ground faults.
 2 These new settings indicate that the fault current must be higher than the previous
 3 settings for the recloser to trip. SCE's 2014 change of settings meant that the overcurrent
 4 relay embedded in the recloser would trip at a higher electrical current than it would have
 5 with the previous setting.

6 **B. Impact of RAR 1228 Setting Change**

7 On December 4, 2017, at 18:17:02.064, RAR 1228 recorded a phase-to-phase fault
 8 (886 amps on phase A and 908 amps on phase B), as shown in Table 2 below. However,
 9 the recloser did not trip. The magnitude and duration of the fault current did not meet the
 10 preset value of the relay's time-current characteristics curve for the recloser to trip.
 11 Therefore, the fault self-cleared, and the circuit segment remained energized. The
 12 recloser may have failed to trip because the fault current setting had been changed to a
 13 less sensitive setting of 200 amps phase fault current on January 8, 2014. The recloser
 14 detected fault currents but failed to trip because the settings in effect in December 2017
 15 were not sensitive enough to trip at those fault current values.

16 At 18:40:56.129 on December 4, 2017, another phase-to-phase fault occurred (see
 17 Table 2 below). This time, the fault currents were higher, at 1565 amps and 1593 amps
 18 on the two phases.⁶ Again, recloser RAR 1228 did not trip. The circuit segment
 19 remained energized.⁷

⁶ Exhibit SCE-02, Appendix A, pages A1 and A2.

⁷ Exhibit SCE-02, Appendix A, pages A1 and A2.

1 Approximately half a second later, at 18:40:56.658, a third phase-to-phase fault
2 occurred (see Table 2 below). The fault currents were 1468 amps and 1488 amps on the
3 two phases.⁸ The recloser finally tripped and deenergized the circuit segment.⁹

4 If SCE had retained the original (pre-2014) recloser settings (with a minimum-to-
5 trip value of 100 amps for phase faults), RAR 1228 could probably have tripped at the
6 first phase-to-phase fault at 18:17:02.064, because the new setting is twice the original
7 fault current setting (100 amps to 200 amps).

8 Had the recloser tripped at the first phase-to-phase fault on December 4, 2017, the
9 recloser would have rapidly shut off power to Anlauf Canyon at 18:17. This would have
10 reduced the amount of energy released by the fault at 18:17 (as well as preventing any
11 subsequent faults). Had the recloser tripped at that time, the number of sparks produced
12 by the fault could have been reduced and possibly prevented ignition.

13 C. Timeline of Anlauf Ignition

14 The Anlauf Ignition occurred in Anlauf Canyon on the evening of December 4,
15 2017.¹⁰ SCE has provided fault current data which captured the electrical events on RAR
16 1228 in connection with the Anlauf ignition.¹¹

17 Table 2 below shows the electrical events recorded on recloser RAR 1228 around
18 the time of the Anlauf ignition.¹² RAR 1228, also called the Anlauf Canyon Remote
19 Automatic Recloser, was located at the bottom of Anlauf Canyon. It was the nearest
20 protective device upstream of the Anlauf ignition location.^{13, 14}

⁸ Exhibit SCE-02, Appendix A, p. A1.

⁹ Exhibit SCE-02, Appendix A, pp. A1 and A2.

¹⁰ Exhibit SCE-02 at 1.

¹¹ Exhibit SCE-02, Appendix A, pp. A1 & A2.

¹² Exhibit SCE-02, Appendix A, pp. A1 & A2.

¹³ Exhibit SCE-02, Appendix A at A1. Footnote 1 states that “the Anlauf Canyon Remote Automatic Recloser (RAR 1228) was closest to the events in Anlauf Canyon.”

¹⁴ Exhibit SCE-03 at 13.

Table 2
RAR 1228
Electrical Events & Current Readings on 12/4/2017

Time	Fault Type	Current in Amps				Recloser Tripped?
		A Phase	B Phase	C Phase	Ground	
18:17:02.064	A-B Phase	886 A	908 A	27 A	2 A	No
18:40:56.129	A-B Phase	1565 A	1593 A	31 A	0 A	No
18:40:56.658	A-B Phase	1468 A	1488 A	20 A	0 A	Yes

1 Table 1 shows that the RAR-1228 recorded three phase-to-phase faults that began
 2 at 18:17:02.064 on December 4, 2017.¹⁵ The circuit segment did not trip until
 3 18:40:56.658. These events indicate that the fault current was neither high enough nor
 4 lasted long enough for the relay to trip on either the first or second phase-to-phase fault.¹⁶
 5 In other words, the relay settings were not sensitive enough to trigger the tripping
 6 operation. Thus, the circuit segment remained energized until the fault current lasted
 7 long enough for the relay to trip, which occurred at 18:40:56.658.

8 **VI. KOENIGSTEIN IGNITION**

9 **A. Electrical Event Records for December 4, 2017**

10 The Koenigstein Ignition occurred at approximately 19:27 on December 4, 2017.¹⁷
 11 SCE has provided fault current data which captured the electrical events on the RAR 179
 12 in connection with the Koenigstein ignition.¹⁸

Table 3 summarizes the electrical events and the current readings for phases A, B, and C, and the Ground, on December 4, 2017 for recloser RAR 179.¹⁹ Phase C is one of the three energized phases of the Castro circuit.

¹⁵ Table 2 data is drawn from Exhibit SCE-02, Appendix A, pp. A1 & A2.

¹⁶ Cal Advocates does not have the fault duration information with respect to the relay's time-current curve.

¹⁷ Exhibit SCE-02 at 4.

¹⁸ Exhibit SCE-02, Appendix A, p. A1.

¹⁹ Exhibit SCE-02, Appendix A, pp. A2 & A3.

Table 3
RAR 179
Electrical Events & Current Readings on 12/4/2017

Time	Fault Type	A Phase	B Phase	C Phase	Ground	Recloser Trip?
19:27:03.816	A-C Phase	924 A	84 A	858 A	4 A	No
19:27:05.736	C Phase to Ground	30 A	61 A	611 A	626 A	No
19:27:06.356	C Phase to Ground	29 A	61 A	611 A	658 A	No
19:27:08.118	C Phase to Ground	32 A	57 A	609 A	618 A	Yes

1 Table 3 shows that four faults occurred over a period of about 4.3 seconds. After
 2 the initial phase-to-phase fault, the C-phase conductor separated and hit the ground in
 3 about 2 seconds. This produced a phase-to-ground fault that lasted approximately 2.5
 4 seconds before the recloser tripped.

5 RAR 179 tripped after the last of the four recorded faults at 19:27:08. At this time,
 6 RAR 179 recorded a ground fault current of 618 amps. However, the recloser measures
 7 and records relay data at intervals, not continuously. Therefore, the recloser may not
 8 have taken a measurement when the fault current reached its peak value. Since the
 9 recloser tripped in 1.083 seconds, SCE estimated that the ground fault current was 1050
 10 amps.²⁰ If the fault current were only 618 amps, the relay would have taken 1.82 seconds
 11 to trip.²¹

12 **B. Analysis of Event Records**

13 Table 3 shows that a phase-to-phase fault occurred at 19:27:03 but RAR 179 did
 14 not trip because of the relatively low fault currents of 924 and 858 amps (on phases A and
 15 C, respectively). Although these phase fault currents were higher than the recloser's
 16 phase current setting of 280 amps, tripping would still depend on the fault current setting.

²⁰ Meeting with SCE subject-matter experts on May 20, 2024.

²¹ Exhibit SCE-02, Appendix A, pp. A2 & A3.

1 For the recloser to trip, the fault current must have the current value and duration that
2 align with the time-current curve for the overcurrent relay.

3 Next, a C-phase to ground fault occurred at 19:27:05 due to the separation of the
4 C-phase conductor. One end of the C-phase conductor fell on the ground, which caused
5 the Koenigstein ignition.^{22,23} The ground fault current had readings of 626 amps at
6 19:27:05.736 and 658 amps at 19:27:06.356. Still, RAR 179 did not trip.²⁴ Although
7 these fault currents exceeded the recloser's ground fault setting of 120 amps, they did not
8 last long enough to meet the time and current combination that would cause the recloser
9 to trip (pursuant to the time-current curve for the overcurrent relay). Consequently, the
10 separated conductor on the ground remained energized, releasing electrical energy and
11 igniting a fire.

12 RAR 179 did not trip during the first phase-to-phase fault or the two subsequent
13 phase-to-ground faults. RAR 179 finally tripped at 19:27:08 and deenergized the circuit
14 segment.²⁵

15 The broken conductor remained energized until 4.3 seconds after the first phase-
16 to-phase fault (from 19:27:03.816 to 19:27:08.118)²⁶ and ignited a fire.^{27,28}

17 **C. SCE changed the settings on RAR 179 in 2014.**

18 Table 4 below shows that SCE changed the settings of RAR 179 to a less sensitive
19 ground current setting of 165 amps on January 8, 2014. SCE then changed the recloser to a more

²² Exhibit SCE-02 at 66.

²³ Koenigstein Fire Agency Report at 5 (Exhibit SCE-02, Appendix C, p. C5).

²⁴ Exhibit SCE-02, Appendix A, pp. A2 and A3.

²⁵ Exhibit SCE-02, Appendix A, pp. A3.

²⁶ Exhibit SCE-02, Appendix A, pp. A2 and A3.

²⁷ Koenigstein Fire Agency Report at 5 (Exhibit SCE-02, Appendix C, p. C5).

²⁸ Exhibit SCE-02 at 68.

1 sensitive ground current setting of 120 amps on May 19, 2014, but it was still less sensitive than
2 the original setting of 100 amps prior to January 8, 2014.²⁹

Table 4 RAR 179 Settings		
	Phase	Ground
Original Setting prior to January 8, 2014	280 A	100 A
Setting Change on January 8, 2014	280 A	165 A
Setting Change on May 19, 2014	280 A	120 A

3

4 **D. Impact of RAR 179 Setting Change**

5 It is likely that SCE's change to a less sensitive ground fault current setting
6 delayed the tripping action of the overcurrent relay when phase-to-ground faults occurred
7 on December 4, 2017. Had SCE retained the more sensitive pre-2014 settings, the
8 overcurrent relay might have been able to trip the circuit at the initial phase-to-ground
9 fault at 19:27:05.

10 If the ground fault current setting had remained unchanged at 100 amps, the event
11 timeline suggests that RAR 179 could have tripped (if the fault lasted long enough) at the
12 first and second phase-to-ground faults at 19:27.05 and 19:27.06. If RAR 179 had
13 tripped sooner, the number of sparks caused by the faults would have been reduced.

14 **E. Impact of Phase Fault Setting**

15 If SCE had adjusted the phase fault current setting on RAR 179 to a lower value
16 than 280 amps, the recloser could have tripped and deenergized the circuit segment at the
17 first phase-to-phase fault at 19:27:03.816. With a phase current setting of 280 amps, the

²⁹ SCE response to data request and CalAdvocates-SCE-A2308013-05, question 13, November 30, 2023, file “013_Castro AR 179 OD43.pdf”; SCE response to data request CalAdvocates-SCE-A2308013-22, questions 4d & 5d, March 27, 2024, and attached documents “Castro AR 1228 Calc Sheet 1_8_2014” and “Castro AR 179 Calc Sheet 6_19_2014”.

1 recloser did not trip,³⁰ which caused an ignition leading to a fire. However, had SCE
2 selected a more sensitive phase current setting, the recloser could have tripped at the
3 phase-to-phase fault. This could have prevented the subsequent phase-to-ground faults.

4 **VII. SCE DID NOT ADEQUATELY CONSIDER WILDFIRE RISK WHEN
5 ADJUSTING RECLOSER SETTINGS.**

6 RAR 179 and RAR 1228 were in a high fire-risk area, as determined by the
7 Commission, Cal Fire, and SCE.^{31,32} SCE's decision to adjust these reclosers' fault
8 current settings to be less sensitive increased the likelihood that faults would not cause
9 the protective devices to trip. This, in turn, increased ignition risk.

10 The question remains if SCE considered the need for shorter tripping times and
11 lower fault current settings due to wildfire risks in 2014, when SCE selected less
12 sensitive recloser settings.

13 SCE disabled both reclosers' (RAR 1228 and RAR 179) automatic reclose
14 function prior to the Thomas Fire on December 4, 2017.³³ However, automatic reclosing
15 can only occur if the recloser trips in the first place. Even though the reclose function
16 was disabled, SCE's 2014 changes to the time-current curves left the system at greater
17 ignition risk.

18 SCE should have conducted a more detailed review of the recloser settings,
19 considering if the circuit segments downstream of the reclosers are in a high fire-risk

³⁰ A setting of 280 amps is known as the pickup current. However, a combination of current and duration is required to trigger the overcurrent relay. The pickup current of 280 amps alone would not meet the duration criteria for the recloser to immediately trip. See Appendix A for further details.

As discussed in the previous section, the phase fault currents at 19:27:03 (924 and 858 amps) exceeded the recloser's pickup current setting, but did not attain the requisite combination of time and duration, as determined by the time-current curve for the overcurrent relay.

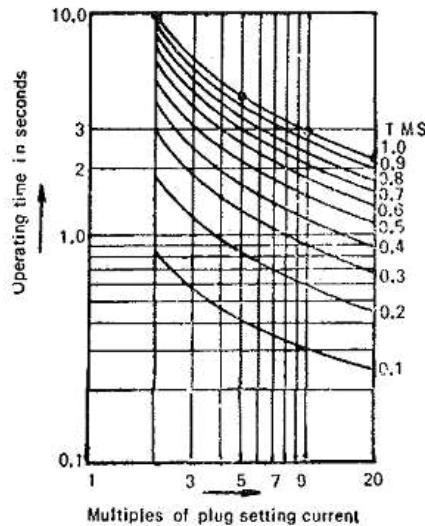
³¹ Exhibit SCE-03 at 8-9 (footnote 4): "Pursuant to the interim Fire Threat Map adopted by the Commission in D.09-08-029 and D.12-01-032, the areas near the Anlauf and Koenigstein ignitions were designated as Very High (as designated on the Cal Fire map)."

³² Exhibit SCE-03 at 8-9: "The areas near the Anlauf and Koenigstein ignitions were both designated by SCE as HFRAs."

³³ Exhibit SCE-03 at 57-58; SCE response to data request CalAdvocates-SCE-A2308013-12A, question 11c, February 14, 2024.

1 area. Prior to changing the auto recloser settings, SCE should have performed a
2 reliability assessment of all the Castro circuit segments in the high fire-risk areas, using
3 the following metrics:

- 4 • Number of outages and the outage duration caused by wire-down events,
- 5 • Number of reclosers,
- 6 • Type of recloser,
- 7 • Settings of reclosers,
- 8 • Number of phase-to-phase faults (sustained and momentary),
- 9 • Duration of the phase-to-phase faults,
- 10 • Number of ground faults,
- 11 • Duration of ground faults,
- 12 • Phase-to-phase fault current reading and duration of fault current *without*
13 recloser tripping operations,
- 14 • Phase-to-phase fault current and duration of fault current *with* recloser
15 tripping operations,
- 16 • Ground fault current reading and duration of fault current recorded *without*
17 recloser tripping operations,
- 18 • Ground fault current reading and duration of fault current recorded *with*
19 recloser tripping operations,
- 20 • Duration of ground-fault related outages, and
- 21 • Number and location of ignition events.


22
23 SCE has not presented evidence that it performed this depth of analysis to
24 prudently address both reliability and wildfire risk, when determining the appropriate
25 recloser settings on the Castro circuit. SCE could have done such an analysis either when
26 adjusting recloser settings in January and May 2014 or at any later point. To mitigate risk
27 on circuits that traverse fire risk areas, SCE only disabled the reclose function of the
28 reclosers and did not adjust the recloser settings to be more sensitive for a faster trip.

Appendix A

Overcurrent Relay Current-Time Curve

The figure below shows typical Inverse Definite Minimum Time (IDMT) characteristics with different times multiplier settings on an overcurrent relay.³⁴

The time-current characteristic is conveniently plotted on a log-log scale. Figure (4.7) shows the IDMT characteristics with different time multiplier settings (TMS).

To interpret this figure:

- The Y-axis on the left is the tripping time (in seconds) of the overcurrent relay.
- The Y-axis on the right is the TMS (time multiplier settings). SCE can adjust these settings.
- The X-axis is the magnitude of the electric current.
- The current settings aligned with 2 (between the 1 and 3) on the X-axis is called the pickup current. The recloser will record the current reading once the pickup current is met or exceeded.

12 Each curve in the figure is a possible time-current curve. Any point along the
13 IDMT curve indicates the magnitude of current and the corresponding time in which the

³⁴ EEEGUIDE.COM, Online Electrical and Electronics Study, Overcurrent Relay Characteristics.

1 relay will trip. The curves are downward sloped: the higher the current, the shorter the
2 tripping time; the lower the current, the longer the tripping time.

3 When a utility adjusts recloser settings:

- 4 The 10 IDMT curves can be set lower or higher by adjusting the TMS
5 value (from 0.1 to 1.0) on the right Y-axis.
- 6 • The lower the TMS value, the higher the sensitivity.
- 7 • The higher the TMS value, the less the sensitivity.
- 8 • The relay will not trip when the current is less than 2 on the X-axis (that
9 is, the pickup current value).

1 **VIII. WITNESS QUALIFICATIONS – HERMAN ENG**

2 My name is Herman Eng. My business address is 320 4th St, Los Angeles,
3 California. I am employed by the Public Advocates Office as a Senior Utilities Engineer
4 (Specialist) in the Safety Branch.

5 I earned a BS in Electrical Engineering from the University of California, Los
6 Angeles, and a MS in Electrical Engineering from California State University, Los
7 Angeles. I am a Professional Engineer in Electrical Engineering in the State of
8 California, and my license number is 12233.

9 I joined the Public Advocates Office in January 2023. In this role, I have worked
10 on Wildfire Mitigation Plans and reviewed General Order 95 petitions by SCE.

11 I previously worked in the Los Angeles Department of Water and Power
12 (LADWP) as an electrical engineer and a Power Engineering Manager for over 35 years.
13 I have extensive experience in the areas of Claims and Investigation, System Protection,
14 Distribution System Reliability and Distribution Planning.

15 I served as a forensic engineer for more than five years. I investigated and
16 performed root cause analysis on power outages. I have represented the LADWP as an
17 expert witness and teamed with city attorneys and third-party engineering consultants on
18 defense strategy. I testified in court and provided depositions to defend against claims
19 and high-profile lawsuits pertaining to power outages.

20 I was a System Protection Engineer for over three years. I was responsible for
21 testing, commissioning, and troubleshooting protective relays from the 4.8 kV circuits to
22 the 500 kV circuits in the distribution, transmission, and generation systems.

23 I spearheaded LADWP's Distribution Reliability Group in 2007, leading a team of
24 electrical engineers. My project team improved LADWP's reliability performance
25 significantly. We assessed the reliability performance of the distribution system,
26 identified and initiated capital and maintenance projects targeting weak areas, and
27 replaced overhead and underground infrastructure in the appropriate areas for optimum
28 reliability performance.

1 I supervised a team of electrical engineers in Distribution Planning. We performed
2 load forecasts, prepared load-related feeder plans, and performed load studies to assess
3 the need to install new Distributing Stations.

4 This completes my statement of qualifications.